SWQC:新一代 sunway 平台上的高效测序数据质量控制

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Lifeng Yan , Zekun Yin , Tong Zhang , Fangjin Zhu , Xiaohui Duan , Bertil Schmidt , Weiguo Liu
{"title":"SWQC:新一代 sunway 平台上的高效测序数据质量控制","authors":"Lifeng Yan ,&nbsp;Zekun Yin ,&nbsp;Tong Zhang ,&nbsp;Fangjin Zhu ,&nbsp;Xiaohui Duan ,&nbsp;Bertil Schmidt ,&nbsp;Weiguo Liu","doi":"10.1016/j.future.2024.107577","DOIUrl":null,"url":null,"abstract":"<div><div>Sequencing data quality control can significantly prevent low-quality data from impacting downstream applications in bioinformatics. The enormous growth of biological sequencing data in recent years introduces new challenges to the efficiency of quality control processes and motivates the need for fast implementations on modern compute systems. The powerful next-generation heterogeneous Sunway platform holds significant potential for addressing this challenge. However, there are currently no dedicated quality control applications that can fully utilize its computational power. To bridge this gap, we introduce SWQC, a novel quality control application specifically designed for the Sunway platform. We present an efficient distributed FASTQ I/O framework for Sunway-based workstations and supercomputers to take advantage of fast SSDs and the parallel file system. In order to support both process-level and thread-level (CPE-level) parallelism to leverage the computational power, we refactor and optimize all standard quality control modules for the heterogeneous Sunway architecture. When using a single node, SWQC achieves speedups between 2 and 40 over highly optimized quality control applications executed on a high-end 48-core AMD server. Additionally, when using 16 nodes, SWQC achieves parallel efficiencies of 70% (for reading and writing a single file) and 95% (for reading one file and writing split files) compared to a single node. Overall, SWQC is able to perform quality control operations for a 140GB FASTQ file within only 70 s using a single Sunway node. It is publicly available at <span><span>https://github.com/RabbitBio/SWQC</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107577"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SWQC: Efficient sequencing data quality control on the next-generation sunway platform\",\"authors\":\"Lifeng Yan ,&nbsp;Zekun Yin ,&nbsp;Tong Zhang ,&nbsp;Fangjin Zhu ,&nbsp;Xiaohui Duan ,&nbsp;Bertil Schmidt ,&nbsp;Weiguo Liu\",\"doi\":\"10.1016/j.future.2024.107577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sequencing data quality control can significantly prevent low-quality data from impacting downstream applications in bioinformatics. The enormous growth of biological sequencing data in recent years introduces new challenges to the efficiency of quality control processes and motivates the need for fast implementations on modern compute systems. The powerful next-generation heterogeneous Sunway platform holds significant potential for addressing this challenge. However, there are currently no dedicated quality control applications that can fully utilize its computational power. To bridge this gap, we introduce SWQC, a novel quality control application specifically designed for the Sunway platform. We present an efficient distributed FASTQ I/O framework for Sunway-based workstations and supercomputers to take advantage of fast SSDs and the parallel file system. In order to support both process-level and thread-level (CPE-level) parallelism to leverage the computational power, we refactor and optimize all standard quality control modules for the heterogeneous Sunway architecture. When using a single node, SWQC achieves speedups between 2 and 40 over highly optimized quality control applications executed on a high-end 48-core AMD server. Additionally, when using 16 nodes, SWQC achieves parallel efficiencies of 70% (for reading and writing a single file) and 95% (for reading one file and writing split files) compared to a single node. Overall, SWQC is able to perform quality control operations for a 140GB FASTQ file within only 70 s using a single Sunway node. It is publicly available at <span><span>https://github.com/RabbitBio/SWQC</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107577\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005417\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005417","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

测序数据质量控制能有效防止低质量数据影响生物信息学的下游应用。近年来,生物测序数据的巨大增长给质量控制流程的效率带来了新的挑战,并促使人们需要在现代计算系统上快速实现这一功能。功能强大的下一代异构 Sunway 平台具有应对这一挑战的巨大潜力。然而,目前还没有专门的质量控制应用能充分利用其计算能力。为了弥补这一差距,我们推出了 SWQC,这是一款专为 Sunway 平台设计的新型质量控制应用程序。我们为基于 Sunway 的工作站和超级计算机提出了一个高效的分布式 FASTQ I/O 框架,以充分利用快速固态硬盘和并行文件系统。为了支持进程级和线程级(CPE 级)并行以充分利用计算能力,我们针对异构 Sunway 架构重构和优化了所有标准质量控制模块。在使用单个节点时,SWQC 比在高端 48 核 AMD 服务器上执行的高度优化质量控制应用程序的速度提高了 2 到 40 倍。此外,在使用 16 个节点时,与单节点相比,SWQC 的并行效率分别达到 70%(读写单个文件)和 95%(读取一个文件并写入分割文件)。总之,使用单个 Sunway 节点,SWQC 只需 70 秒就能完成 140GB FASTQ 文件的质量控制操作。它可在 https://github.com/RabbitBio/SWQC 上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SWQC: Efficient sequencing data quality control on the next-generation sunway platform
Sequencing data quality control can significantly prevent low-quality data from impacting downstream applications in bioinformatics. The enormous growth of biological sequencing data in recent years introduces new challenges to the efficiency of quality control processes and motivates the need for fast implementations on modern compute systems. The powerful next-generation heterogeneous Sunway platform holds significant potential for addressing this challenge. However, there are currently no dedicated quality control applications that can fully utilize its computational power. To bridge this gap, we introduce SWQC, a novel quality control application specifically designed for the Sunway platform. We present an efficient distributed FASTQ I/O framework for Sunway-based workstations and supercomputers to take advantage of fast SSDs and the parallel file system. In order to support both process-level and thread-level (CPE-level) parallelism to leverage the computational power, we refactor and optimize all standard quality control modules for the heterogeneous Sunway architecture. When using a single node, SWQC achieves speedups between 2 and 40 over highly optimized quality control applications executed on a high-end 48-core AMD server. Additionally, when using 16 nodes, SWQC achieves parallel efficiencies of 70% (for reading and writing a single file) and 95% (for reading one file and writing split files) compared to a single node. Overall, SWQC is able to perform quality control operations for a 140GB FASTQ file within only 70 s using a single Sunway node. It is publicly available at https://github.com/RabbitBio/SWQC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信