{"title":"CBWO:一种新颖的云计算多目标负载平衡技术","authors":"Vahideh Hayyolalam, Öznur Özkasap","doi":"10.1016/j.future.2024.107561","DOIUrl":null,"url":null,"abstract":"<div><div>In cloud computing systems, the growing demand for diverse applications has led to challenges in resource allocation and workload distribution, resulting in increased energy consumption and computational costs. To address these challenges, we propose a novel load-balancing method, namely CBWO, that integrates Chaos theory with the Black Widow Optimization algorithm. Our approach is designed to optimize cloud computing environments by improving energy efficiency and resource utilization. We employ CloudSim for simulations, evaluating key performance metrics such as energy consumption, resource utilization, makespan, task completion time, and imbalance degree. The experimental results demonstrate the superiority of our method, achieving average improvements of 67.28% in makespan and 29.03% in energy consumption compared to existing solutions.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"164 ","pages":"Article 107561"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBWO: A Novel Multi-objective Load Balancing Technique for Cloud Computing\",\"authors\":\"Vahideh Hayyolalam, Öznur Özkasap\",\"doi\":\"10.1016/j.future.2024.107561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In cloud computing systems, the growing demand for diverse applications has led to challenges in resource allocation and workload distribution, resulting in increased energy consumption and computational costs. To address these challenges, we propose a novel load-balancing method, namely CBWO, that integrates Chaos theory with the Black Widow Optimization algorithm. Our approach is designed to optimize cloud computing environments by improving energy efficiency and resource utilization. We employ CloudSim for simulations, evaluating key performance metrics such as energy consumption, resource utilization, makespan, task completion time, and imbalance degree. The experimental results demonstrate the superiority of our method, achieving average improvements of 67.28% in makespan and 29.03% in energy consumption compared to existing solutions.</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"164 \",\"pages\":\"Article 107561\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X24005259\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24005259","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
CBWO: A Novel Multi-objective Load Balancing Technique for Cloud Computing
In cloud computing systems, the growing demand for diverse applications has led to challenges in resource allocation and workload distribution, resulting in increased energy consumption and computational costs. To address these challenges, we propose a novel load-balancing method, namely CBWO, that integrates Chaos theory with the Black Widow Optimization algorithm. Our approach is designed to optimize cloud computing environments by improving energy efficiency and resource utilization. We employ CloudSim for simulations, evaluating key performance metrics such as energy consumption, resource utilization, makespan, task completion time, and imbalance degree. The experimental results demonstrate the superiority of our method, achieving average improvements of 67.28% in makespan and 29.03% in energy consumption compared to existing solutions.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.