论一类随机过程的交叉变异

IF 1.4 Q2 MATHEMATICS, APPLIED
Soufiane Moussaten
{"title":"论一类随机过程的交叉变异","authors":"Soufiane Moussaten","doi":"10.1016/j.rinam.2024.100509","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper deals with the study of the cross-variation of two-dimensional stochastic process defined using the Young integral with respect to a continuous, <span><math><mi>α</mi></math></span>-self-similar Gaussian process that does not necessarily have stationary increments, with increment exponent some <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We analyze the limit, in probability, of the so-called cross-variation when <span><math><mi>β</mi></math></span> in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mi>α</mi></mrow></mfenced></math></span>, and we finish by providing some examples of known processes that satisfy the required assumptions.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"24 ","pages":"Article 100509"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the cross-variation of a class of stochastic processes\",\"authors\":\"Soufiane Moussaten\",\"doi\":\"10.1016/j.rinam.2024.100509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present paper deals with the study of the cross-variation of two-dimensional stochastic process defined using the Young integral with respect to a continuous, <span><math><mi>α</mi></math></span>-self-similar Gaussian process that does not necessarily have stationary increments, with increment exponent some <span><math><mrow><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We analyze the limit, in probability, of the so-called cross-variation when <span><math><mi>β</mi></math></span> in <span><math><mfenced><mrow><mn>0</mn><mo>,</mo><mn>2</mn><mi>α</mi></mrow></mfenced></math></span>, and we finish by providing some examples of known processes that satisfy the required assumptions.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"24 \",\"pages\":\"Article 100509\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是二维随机过程的交叉变异,其定义是相对于一个连续的、α自相似的高斯过程(不一定有静止增量)的杨积分,增量指数为 β>0。我们分析了当β在0,2α内时,所谓交叉变异的概率极限,最后提供了一些满足所需假设的已知过程的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the cross-variation of a class of stochastic processes
The present paper deals with the study of the cross-variation of two-dimensional stochastic process defined using the Young integral with respect to a continuous, α-self-similar Gaussian process that does not necessarily have stationary increments, with increment exponent some β>0. We analyze the limit, in probability, of the so-called cross-variation when β in 0,2α, and we finish by providing some examples of known processes that satisfy the required assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信