Peng Chen , Zhengshun Cheng , Shi Deng , Zhiqiang Hu , Torgeir Moan
{"title":"用于浮动风力涡轮机全耦合建模和动态分析的频域方法","authors":"Peng Chen , Zhengshun Cheng , Shi Deng , Zhiqiang Hu , Torgeir Moan","doi":"10.1016/j.marstruc.2024.103715","DOIUrl":null,"url":null,"abstract":"<div><div>In design of Floating Wind Turbines (FWTs), balancing computational efficiency with analytical accuracy is crucial, a challenge often unmet by time-domain methods. This study innovatively develops and verifies an efficient frequency domain method for fully coupled modelling and dynamic analysis of FWTs, termed DARwind-FD. The tower of the FWT is conceptualised as a beam, with the rotor-nacelle assembly (RNA) and the floating platform envisaged as rigid bodies situated at each extremity. The aerodynamic loads are evaluated utilising the Blade Element Momentum (BEM) theory, supplemented with an analytical model accounting for added mass and damping. The hydrodynamic loads are assessed through the Linear Potential Flow theory, taking into account both first and second-order wave forces along with viscous effects. The mooring forces are analysed using a linearised stiffness matrix, derived from a quasi-static catenary methodology. The code-to-code verification of DARwind-FD is based on the OC4 DeepCwind semi-submersible platform with a 5MW wind turbine, aligns well with OpenFAST time-domain results in terms of dynamic responses such as platform motions, mooring tension, tower base bending moment, and nacelle acceleration under various conditions. The outcomes of this research offer robust technical support for the preliminary design and optimisation of FWTs, thereby contributing to the sustainable advancement of offshore wind energy systems.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"99 ","pages":"Article 103715"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A frequency domain method for fully coupled modelling and dynamic analysis of floating wind turbines\",\"authors\":\"Peng Chen , Zhengshun Cheng , Shi Deng , Zhiqiang Hu , Torgeir Moan\",\"doi\":\"10.1016/j.marstruc.2024.103715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In design of Floating Wind Turbines (FWTs), balancing computational efficiency with analytical accuracy is crucial, a challenge often unmet by time-domain methods. This study innovatively develops and verifies an efficient frequency domain method for fully coupled modelling and dynamic analysis of FWTs, termed DARwind-FD. The tower of the FWT is conceptualised as a beam, with the rotor-nacelle assembly (RNA) and the floating platform envisaged as rigid bodies situated at each extremity. The aerodynamic loads are evaluated utilising the Blade Element Momentum (BEM) theory, supplemented with an analytical model accounting for added mass and damping. The hydrodynamic loads are assessed through the Linear Potential Flow theory, taking into account both first and second-order wave forces along with viscous effects. The mooring forces are analysed using a linearised stiffness matrix, derived from a quasi-static catenary methodology. The code-to-code verification of DARwind-FD is based on the OC4 DeepCwind semi-submersible platform with a 5MW wind turbine, aligns well with OpenFAST time-domain results in terms of dynamic responses such as platform motions, mooring tension, tower base bending moment, and nacelle acceleration under various conditions. The outcomes of this research offer robust technical support for the preliminary design and optimisation of FWTs, thereby contributing to the sustainable advancement of offshore wind energy systems.</div></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"99 \",\"pages\":\"Article 103715\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924001436\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924001436","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A frequency domain method for fully coupled modelling and dynamic analysis of floating wind turbines
In design of Floating Wind Turbines (FWTs), balancing computational efficiency with analytical accuracy is crucial, a challenge often unmet by time-domain methods. This study innovatively develops and verifies an efficient frequency domain method for fully coupled modelling and dynamic analysis of FWTs, termed DARwind-FD. The tower of the FWT is conceptualised as a beam, with the rotor-nacelle assembly (RNA) and the floating platform envisaged as rigid bodies situated at each extremity. The aerodynamic loads are evaluated utilising the Blade Element Momentum (BEM) theory, supplemented with an analytical model accounting for added mass and damping. The hydrodynamic loads are assessed through the Linear Potential Flow theory, taking into account both first and second-order wave forces along with viscous effects. The mooring forces are analysed using a linearised stiffness matrix, derived from a quasi-static catenary methodology. The code-to-code verification of DARwind-FD is based on the OC4 DeepCwind semi-submersible platform with a 5MW wind turbine, aligns well with OpenFAST time-domain results in terms of dynamic responses such as platform motions, mooring tension, tower base bending moment, and nacelle acceleration under various conditions. The outcomes of this research offer robust technical support for the preliminary design and optimisation of FWTs, thereby contributing to the sustainable advancement of offshore wind energy systems.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.