利用后处理网络优化面向任务的管道对话系统

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Atsumoto Ohashi, Ryuichiro Higashinaka
{"title":"利用后处理网络优化面向任务的管道对话系统","authors":"Atsumoto Ohashi,&nbsp;Ryuichiro Higashinaka","doi":"10.1016/j.csl.2024.101742","DOIUrl":null,"url":null,"abstract":"<div><div>Many studies have proposed methods for optimizing the dialogue performance of an entire pipeline task-oriented dialogue system by jointly training modules in the system using reinforcement learning. However, these methods are limited in that they can only be applied to modules implemented using trainable neural-based methods. To solve this problem, we propose a method for optimizing the dialogue performance of a pipeline system that consists of modules implemented with arbitrary methods for dialogue. With our method, neural-based components called post-processing networks (PPNs) are installed inside such a system to post-process the output of each module. All PPNs are updated to improve the overall dialogue performance of the system by using reinforcement learning, not necessitating that each module be differentiable. Through dialogue simulations and human evaluations on two well-studied task-oriented dialogue datasets, CamRest676 and MultiWOZ, we show that our method can improve the dialogue performance of pipeline systems consisting of various modules. In addition, a comprehensive analysis of the results of the MultiWOZ experiments reveals the patterns of post-processing by PPNs that contribute to the overall dialogue performance of the system.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing pipeline task-oriented dialogue systems using post-processing networks\",\"authors\":\"Atsumoto Ohashi,&nbsp;Ryuichiro Higashinaka\",\"doi\":\"10.1016/j.csl.2024.101742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many studies have proposed methods for optimizing the dialogue performance of an entire pipeline task-oriented dialogue system by jointly training modules in the system using reinforcement learning. However, these methods are limited in that they can only be applied to modules implemented using trainable neural-based methods. To solve this problem, we propose a method for optimizing the dialogue performance of a pipeline system that consists of modules implemented with arbitrary methods for dialogue. With our method, neural-based components called post-processing networks (PPNs) are installed inside such a system to post-process the output of each module. All PPNs are updated to improve the overall dialogue performance of the system by using reinforcement learning, not necessitating that each module be differentiable. Through dialogue simulations and human evaluations on two well-studied task-oriented dialogue datasets, CamRest676 and MultiWOZ, we show that our method can improve the dialogue performance of pipeline systems consisting of various modules. In addition, a comprehensive analysis of the results of the MultiWOZ experiments reveals the patterns of post-processing by PPNs that contribute to the overall dialogue performance of the system.</div></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824001256\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824001256","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

许多研究都提出了通过使用强化学习联合训练系统中的模块来优化整个管道任务导向对话系统对话性能的方法。然而,这些方法都有局限性,因为它们只能应用于使用可训练神经方法实现的模块。为了解决这个问题,我们提出了一种优化管道系统对话性能的方法,该管道系统由使用任意对话方法实现的模块组成。在我们的方法中,基于神经的组件(称为后处理网络(PPN))被安装在这样的系统中,对每个模块的输出进行后处理。所有后处理网络都会更新,通过强化学习提高系统的整体对话性能,而不要求每个模块都是可微分的。通过在 CamRest676 和 MultiWOZ 这两个经过充分研究的任务导向型对话数据集上进行对话模拟和人工评估,我们证明了我们的方法可以提高由不同模块组成的管道系统的对话性能。此外,对 MultiWOZ 实验结果的综合分析揭示了 PPN 的后处理模式对系统整体对话性能的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing pipeline task-oriented dialogue systems using post-processing networks
Many studies have proposed methods for optimizing the dialogue performance of an entire pipeline task-oriented dialogue system by jointly training modules in the system using reinforcement learning. However, these methods are limited in that they can only be applied to modules implemented using trainable neural-based methods. To solve this problem, we propose a method for optimizing the dialogue performance of a pipeline system that consists of modules implemented with arbitrary methods for dialogue. With our method, neural-based components called post-processing networks (PPNs) are installed inside such a system to post-process the output of each module. All PPNs are updated to improve the overall dialogue performance of the system by using reinforcement learning, not necessitating that each module be differentiable. Through dialogue simulations and human evaluations on two well-studied task-oriented dialogue datasets, CamRest676 and MultiWOZ, we show that our method can improve the dialogue performance of pipeline systems consisting of various modules. In addition, a comprehensive analysis of the results of the MultiWOZ experiments reveals the patterns of post-processing by PPNs that contribute to the overall dialogue performance of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信