{"title":"利用深度强化学习对考虑双向电力流的插电式电动汽车充电站进行需求管理","authors":"Durgesh Choudhary, Rabindra Nath Mahanty, Niranjan Kumar","doi":"10.1016/j.engappai.2024.109585","DOIUrl":null,"url":null,"abstract":"<div><div>The recent development in plug-in electric vehicle technology has increased its popularity. Plug-in electric vehicles are widely used for their environment-friendly nature and they contribute to the reduction in global warming. With the increasing number of plug-in electric vehicles, charging coordination becomes essential for managing the charging station demand. The random charging behaviour of plug-in electric vehicles makes it a difficult task. This paper proposes a novel demand management strategy of charging stations. The proposed strategy supports the grid and reduces its burden during peak load. Deep-Q network based deep reinforcement learning is used in the proposed strategy. It is a value based deep reinforcement learning algorithm that approximates the Q value function using deep neural network. The deep reinforcement schedules the charging and discharging of plug-in electric vehicles to optimize the cost and manage the charging station load. Deep reinforcement learning enhances charging coordination by dynamically optimizing charging schedules according to real-time conditions and user preferences, thereby increasing efficiency and better integration with the grid. The reward function in deep reinforcement learning is designed based on the power price and demand of the charging station. A discount factor is introduced based on the service time to make the charging coordination efficient. A case study using dynamic pricing is carried out to validate the proposed strategy. The results prove that the proposed strategy optimizes charging and discharging costs and manages charging station demand efficiently. It is also observed that the proposed strategy is fast and incurs less computational cost.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand management of plug-in electric vehicle charging station considering bidirectional power flow using deep reinforcement learning\",\"authors\":\"Durgesh Choudhary, Rabindra Nath Mahanty, Niranjan Kumar\",\"doi\":\"10.1016/j.engappai.2024.109585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The recent development in plug-in electric vehicle technology has increased its popularity. Plug-in electric vehicles are widely used for their environment-friendly nature and they contribute to the reduction in global warming. With the increasing number of plug-in electric vehicles, charging coordination becomes essential for managing the charging station demand. The random charging behaviour of plug-in electric vehicles makes it a difficult task. This paper proposes a novel demand management strategy of charging stations. The proposed strategy supports the grid and reduces its burden during peak load. Deep-Q network based deep reinforcement learning is used in the proposed strategy. It is a value based deep reinforcement learning algorithm that approximates the Q value function using deep neural network. The deep reinforcement schedules the charging and discharging of plug-in electric vehicles to optimize the cost and manage the charging station load. Deep reinforcement learning enhances charging coordination by dynamically optimizing charging schedules according to real-time conditions and user preferences, thereby increasing efficiency and better integration with the grid. The reward function in deep reinforcement learning is designed based on the power price and demand of the charging station. A discount factor is introduced based on the service time to make the charging coordination efficient. A case study using dynamic pricing is carried out to validate the proposed strategy. The results prove that the proposed strategy optimizes charging and discharging costs and manages charging station demand efficiently. It is also observed that the proposed strategy is fast and incurs less computational cost.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624017433\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017433","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Demand management of plug-in electric vehicle charging station considering bidirectional power flow using deep reinforcement learning
The recent development in plug-in electric vehicle technology has increased its popularity. Plug-in electric vehicles are widely used for their environment-friendly nature and they contribute to the reduction in global warming. With the increasing number of plug-in electric vehicles, charging coordination becomes essential for managing the charging station demand. The random charging behaviour of plug-in electric vehicles makes it a difficult task. This paper proposes a novel demand management strategy of charging stations. The proposed strategy supports the grid and reduces its burden during peak load. Deep-Q network based deep reinforcement learning is used in the proposed strategy. It is a value based deep reinforcement learning algorithm that approximates the Q value function using deep neural network. The deep reinforcement schedules the charging and discharging of plug-in electric vehicles to optimize the cost and manage the charging station load. Deep reinforcement learning enhances charging coordination by dynamically optimizing charging schedules according to real-time conditions and user preferences, thereby increasing efficiency and better integration with the grid. The reward function in deep reinforcement learning is designed based on the power price and demand of the charging station. A discount factor is introduced based on the service time to make the charging coordination efficient. A case study using dynamic pricing is carried out to validate the proposed strategy. The results prove that the proposed strategy optimizes charging and discharging costs and manages charging station demand efficiently. It is also observed that the proposed strategy is fast and incurs less computational cost.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.