用于序列子空间聚类的潜在时间平滑性诱导 Schatten-p norm 因式分解法

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yuan Xu , Zhen-Zhen Zhao , Tong-Wei Lu , Wei Ke , Yi Luo , Yan-Lin He , Qun-Xiong Zhu , Yang Zhang , Ming-Qing Zhang
{"title":"用于序列子空间聚类的潜在时间平滑性诱导 Schatten-p norm 因式分解法","authors":"Yuan Xu ,&nbsp;Zhen-Zhen Zhao ,&nbsp;Tong-Wei Lu ,&nbsp;Wei Ke ,&nbsp;Yi Luo ,&nbsp;Yan-Lin He ,&nbsp;Qun-Xiong Zhu ,&nbsp;Yang Zhang ,&nbsp;Ming-Qing Zhang","doi":"10.1016/j.engappai.2024.109476","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative latent temporal smoothness-induced Schatten-<span><math><mi>p</mi></math></span> norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent temporal smoothness-induced Schatten-p norm factorization for sequential subspace clustering\",\"authors\":\"Yuan Xu ,&nbsp;Zhen-Zhen Zhao ,&nbsp;Tong-Wei Lu ,&nbsp;Wei Ke ,&nbsp;Yi Luo ,&nbsp;Yan-Lin He ,&nbsp;Qun-Xiong Zhu ,&nbsp;Yang Zhang ,&nbsp;Ming-Qing Zhang\",\"doi\":\"10.1016/j.engappai.2024.109476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an innovative latent temporal smoothness-induced Schatten-<span><math><mi>p</mi></math></span> norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016348\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016348","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种创新的潜在时态平滑诱导 Schatten-p norm 因式分解(SpFLTS)方法,旨在解决顺序子空间聚类任务中的难题。从全局来看,SpFLTS 采用了基于 Schatten-2/3 准则因式分解的低秩子空间聚类框架,以增强对原始数据特征的全面捕捉。从局部来看,通过次正交投影得到的潜在子空间矩阵的时间梯度诱导了总变异平滑项,从而保持了序列潜在空间的平滑性。为了有效解决闭式优化问题,快速傅立叶变换与非凸交替方向乘法相结合来优化潜子空间矩阵,从而大大加快了计算速度。实验结果表明,所提出的 SpFLTS 方法在多个基准数据库上超越了现有技术,凸显了其卓越的聚类性能和广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent temporal smoothness-induced Schatten-p norm factorization for sequential subspace clustering
This paper presents an innovative latent temporal smoothness-induced Schatten-p norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信