Yuan Xu , Zhen-Zhen Zhao , Tong-Wei Lu , Wei Ke , Yi Luo , Yan-Lin He , Qun-Xiong Zhu , Yang Zhang , Ming-Qing Zhang
{"title":"用于序列子空间聚类的潜在时间平滑性诱导 Schatten-p norm 因式分解法","authors":"Yuan Xu , Zhen-Zhen Zhao , Tong-Wei Lu , Wei Ke , Yi Luo , Yan-Lin He , Qun-Xiong Zhu , Yang Zhang , Ming-Qing Zhang","doi":"10.1016/j.engappai.2024.109476","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative latent temporal smoothness-induced Schatten-<span><math><mi>p</mi></math></span> norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent temporal smoothness-induced Schatten-p norm factorization for sequential subspace clustering\",\"authors\":\"Yuan Xu , Zhen-Zhen Zhao , Tong-Wei Lu , Wei Ke , Yi Luo , Yan-Lin He , Qun-Xiong Zhu , Yang Zhang , Ming-Qing Zhang\",\"doi\":\"10.1016/j.engappai.2024.109476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an innovative latent temporal smoothness-induced Schatten-<span><math><mi>p</mi></math></span> norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624016348\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016348","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Latent temporal smoothness-induced Schatten-p norm factorization for sequential subspace clustering
This paper presents an innovative latent temporal smoothness-induced Schatten- norm factorization (SpFLTS) method aimed at addressing challenges in sequential subspace clustering tasks. Globally, SpFLTS employs a low-rank subspace clustering framework based on Schatten-2/3 norm factorization to enhance the comprehensive capture of the original data features. Locally, a total variation smoothing term is induced to the temporal gradients of latent subspace matrices obtained from sub-orthogonal projections, thereby preserving smoothness in the sequential latent space. To efficiently solve the closed-form optimization problem, a fast Fourier transform is combined with the non-convex alternating direction method of multipliers to optimize latent subspace matrix, which greatly speeds up computation. Experimental results demonstrate that the proposed SpFLTS method surpasses existing techniques on multiple benchmark databases, highlighting its superior clustering performance and extensive application potential.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.