PDE 规则化空间量化回归

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Cristian Castiglione , Eleonora Arnone , Mauro Bernardi , Alessio Farcomeni , Laura M. Sangalli
{"title":"PDE 规则化空间量化回归","authors":"Cristian Castiglione ,&nbsp;Eleonora Arnone ,&nbsp;Mauro Bernardi ,&nbsp;Alessio Farcomeni ,&nbsp;Laura M. Sangalli","doi":"10.1016/j.jmva.2024.105381","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of estimating the conditional quantiles of an unknown distribution from data gathered on a spatial domain. We propose a spatial quantile regression model with differential regularisation. The penalisation involves a partial differential equation defined over the considered spatial domain, that can display a complex geometry. Such regularisation permits, on one hand, to model complex anisotropy and non-stationarity patterns, possibly on the basis of problem-specific knowledge, and, on the other hand, to comply with the complex conformation of the spatial domain. We define an innovative functional Expectation–Maximisation algorithm, to estimate the unknown quantile surface. We moreover describe a suitable discretisation of the estimation problem, and investigate the theoretical properties of the resulting estimator. The performance of the proposed method is assessed by simulation studies, comparing with state-of-the-art techniques for spatial quantile regression. Finally, the considered model is applied to two real data analyses, the first concerning rainfall measurements in Switzerland and the second concerning sea surface conductivity data in the Gulf of Mexico.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"205 ","pages":"Article 105381"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDE-regularised spatial quantile regression\",\"authors\":\"Cristian Castiglione ,&nbsp;Eleonora Arnone ,&nbsp;Mauro Bernardi ,&nbsp;Alessio Farcomeni ,&nbsp;Laura M. Sangalli\",\"doi\":\"10.1016/j.jmva.2024.105381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of estimating the conditional quantiles of an unknown distribution from data gathered on a spatial domain. We propose a spatial quantile regression model with differential regularisation. The penalisation involves a partial differential equation defined over the considered spatial domain, that can display a complex geometry. Such regularisation permits, on one hand, to model complex anisotropy and non-stationarity patterns, possibly on the basis of problem-specific knowledge, and, on the other hand, to comply with the complex conformation of the spatial domain. We define an innovative functional Expectation–Maximisation algorithm, to estimate the unknown quantile surface. We moreover describe a suitable discretisation of the estimation problem, and investigate the theoretical properties of the resulting estimator. The performance of the proposed method is assessed by simulation studies, comparing with state-of-the-art techniques for spatial quantile regression. Finally, the considered model is applied to two real data analyses, the first concerning rainfall measurements in Switzerland and the second concerning sea surface conductivity data in the Gulf of Mexico.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"205 \",\"pages\":\"Article 105381\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000885\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000885","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是从空间域收集的数据中估计未知分布的条件量值。我们提出了一种带有微分正则化的空间量化回归模型。正则化涉及一个定义在所考虑的空间域上的偏微分方程,该空间域可以显示复杂的几何形状。这种正则化一方面可以对复杂的各向异性和非稳态模式(可能基于特定问题的知识)进行建模,另一方面也符合空间域的复杂构造。我们定义了一种创新的函数期望最大化算法,用于估计未知的量化曲面。此外,我们还描述了估算问题的适当离散化,并研究了由此产生的估算器的理论特性。我们通过模拟研究评估了所提方法的性能,并与最先进的空间量化回归技术进行了比较。最后,将所考虑的模型应用于两项实际数据分析,第一项涉及瑞士的降雨测量,第二项涉及墨西哥湾的海面电导率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDE-regularised spatial quantile regression
We consider the problem of estimating the conditional quantiles of an unknown distribution from data gathered on a spatial domain. We propose a spatial quantile regression model with differential regularisation. The penalisation involves a partial differential equation defined over the considered spatial domain, that can display a complex geometry. Such regularisation permits, on one hand, to model complex anisotropy and non-stationarity patterns, possibly on the basis of problem-specific knowledge, and, on the other hand, to comply with the complex conformation of the spatial domain. We define an innovative functional Expectation–Maximisation algorithm, to estimate the unknown quantile surface. We moreover describe a suitable discretisation of the estimation problem, and investigate the theoretical properties of the resulting estimator. The performance of the proposed method is assessed by simulation studies, comparing with state-of-the-art techniques for spatial quantile regression. Finally, the considered model is applied to two real data analyses, the first concerning rainfall measurements in Switzerland and the second concerning sea surface conductivity data in the Gulf of Mexico.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信