{"title":"研究激光粉末床熔融 Ti6Al4V 合金疲劳性能中的单个熔融缺失缺陷:有限元分析","authors":"","doi":"10.1016/j.tafmec.2024.104735","DOIUrl":null,"url":null,"abstract":"<div><div>Laser-Powder Bed Fusion (L-PBF) techniques have revolutionized the production of Ti6Al4V alloys across various industries. However, the widespread adoption of L-PBF Ti6Al4V alloys is impeded by their inadequate fatigue performance, particularly in high cycle regimes. A significant contributing factor to this limitation is the presence of internal defects inherent to the L-PBF process, act as sites for fatigue crack initiation. Previous investigations have focused on the fatigue performance of L-PBF Ti6Al4V alloys with gas porosities, while research on lack-of-fusions (LOFs) which are recognized as the most detrimental defects, remains limited. In order to deepen our understanding of the factors influencing the reduced fatigue performance observed in L-PBF Ti6Al4V alloys associated with inherent LOFs, this study employed three-dimensional (3D) finite element analysis approaches. Such approaches allow to assess fatigue indicator parameters to evaluate fatigue life and predict fatigue crack propagation. A 3D average Smith-Watson-Topper method has been proposed, which is able to rationally estimate the fatigue life of L-PBF Ti6Al4V. In addition, a novel finite element method has been developed to accurately calculate stress intensity factors along irregular shaped crack front of a notch-like feature embedded on a LOF. Additionally, parametric studies were conducted to gain further insights into the influence of LOFs on fatigue performance. The results shown the presence of embedded humps and notch-like features, and their topologies play key roles in the fatigue performance of LOF predominated L-PBF Ti6Al4V alloys.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of individual lack-of-fusion defects in the fatigue performance of laser-powder bed fusion Ti6Al4V alloys: A finite element analysis\",\"authors\":\"\",\"doi\":\"10.1016/j.tafmec.2024.104735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser-Powder Bed Fusion (L-PBF) techniques have revolutionized the production of Ti6Al4V alloys across various industries. However, the widespread adoption of L-PBF Ti6Al4V alloys is impeded by their inadequate fatigue performance, particularly in high cycle regimes. A significant contributing factor to this limitation is the presence of internal defects inherent to the L-PBF process, act as sites for fatigue crack initiation. Previous investigations have focused on the fatigue performance of L-PBF Ti6Al4V alloys with gas porosities, while research on lack-of-fusions (LOFs) which are recognized as the most detrimental defects, remains limited. In order to deepen our understanding of the factors influencing the reduced fatigue performance observed in L-PBF Ti6Al4V alloys associated with inherent LOFs, this study employed three-dimensional (3D) finite element analysis approaches. Such approaches allow to assess fatigue indicator parameters to evaluate fatigue life and predict fatigue crack propagation. A 3D average Smith-Watson-Topper method has been proposed, which is able to rationally estimate the fatigue life of L-PBF Ti6Al4V. In addition, a novel finite element method has been developed to accurately calculate stress intensity factors along irregular shaped crack front of a notch-like feature embedded on a LOF. Additionally, parametric studies were conducted to gain further insights into the influence of LOFs on fatigue performance. The results shown the presence of embedded humps and notch-like features, and their topologies play key roles in the fatigue performance of LOF predominated L-PBF Ti6Al4V alloys.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004853\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of individual lack-of-fusion defects in the fatigue performance of laser-powder bed fusion Ti6Al4V alloys: A finite element analysis
Laser-Powder Bed Fusion (L-PBF) techniques have revolutionized the production of Ti6Al4V alloys across various industries. However, the widespread adoption of L-PBF Ti6Al4V alloys is impeded by their inadequate fatigue performance, particularly in high cycle regimes. A significant contributing factor to this limitation is the presence of internal defects inherent to the L-PBF process, act as sites for fatigue crack initiation. Previous investigations have focused on the fatigue performance of L-PBF Ti6Al4V alloys with gas porosities, while research on lack-of-fusions (LOFs) which are recognized as the most detrimental defects, remains limited. In order to deepen our understanding of the factors influencing the reduced fatigue performance observed in L-PBF Ti6Al4V alloys associated with inherent LOFs, this study employed three-dimensional (3D) finite element analysis approaches. Such approaches allow to assess fatigue indicator parameters to evaluate fatigue life and predict fatigue crack propagation. A 3D average Smith-Watson-Topper method has been proposed, which is able to rationally estimate the fatigue life of L-PBF Ti6Al4V. In addition, a novel finite element method has been developed to accurately calculate stress intensity factors along irregular shaped crack front of a notch-like feature embedded on a LOF. Additionally, parametric studies were conducted to gain further insights into the influence of LOFs on fatigue performance. The results shown the presence of embedded humps and notch-like features, and their topologies play key roles in the fatigue performance of LOF predominated L-PBF Ti6Al4V alloys.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.