视频问题解答:最新技术调查

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jeshmol P.J., Binsu C. Kovoor
{"title":"视频问题解答:最新技术调查","authors":"Jeshmol P.J.,&nbsp;Binsu C. Kovoor","doi":"10.1016/j.jvcir.2024.104320","DOIUrl":null,"url":null,"abstract":"<div><div>Video Question Answering (VideoQA) emerges as a prominent trend in the domain of Artificial Intelligence, Computer Vision, and Natural Language Processing. It involves developing systems capable of understanding, analyzing, and responding to questions about the content of videos. The Proposed survey presents an in-depth overview of the current landscape of Question Answering, shedding light on the challenges, methodologies, datasets, and innovative approaches in the domain. The key components of the Video Question Answering (VideoQA) framework include video feature extraction, question processing, reasoning, and response generation. It underscores the importance of datasets in shaping VideoQA research and the diversity of question types, from factual inquiries to spatial and temporal reasoning. The survey highlights the ongoing research directions and future prospects for VideoQA. Finally, the proposed survey gives a road map for future explorations at the intersection of multiple disciplines, emphasizing the ultimate objective of pushing the boundaries of knowledge and innovation.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104320"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Video Question Answering: A survey of the state-of-the-art\",\"authors\":\"Jeshmol P.J.,&nbsp;Binsu C. Kovoor\",\"doi\":\"10.1016/j.jvcir.2024.104320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Video Question Answering (VideoQA) emerges as a prominent trend in the domain of Artificial Intelligence, Computer Vision, and Natural Language Processing. It involves developing systems capable of understanding, analyzing, and responding to questions about the content of videos. The Proposed survey presents an in-depth overview of the current landscape of Question Answering, shedding light on the challenges, methodologies, datasets, and innovative approaches in the domain. The key components of the Video Question Answering (VideoQA) framework include video feature extraction, question processing, reasoning, and response generation. It underscores the importance of datasets in shaping VideoQA research and the diversity of question types, from factual inquiries to spatial and temporal reasoning. The survey highlights the ongoing research directions and future prospects for VideoQA. Finally, the proposed survey gives a road map for future explorations at the intersection of multiple disciplines, emphasizing the ultimate objective of pushing the boundaries of knowledge and innovation.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"105 \",\"pages\":\"Article 104320\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002761\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002761","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

视频问题解答(VideoQA)是人工智能、计算机视觉和自然语言处理领域的一个突出趋势。它涉及开发能够理解、分析和回答有关视频内容问题的系统。本调查报告深入概述了问题解答的现状,揭示了该领域的挑战、方法、数据集和创新方法。视频问题解答(VideoQA)框架的关键组成部分包括视频特征提取、问题处理、推理和响应生成。它强调了数据集在视频问题解答研究中的重要性,以及问题类型的多样性,从事实查询到空间和时间推理。调查报告强调了视频质量保证正在进行的研究方向和未来前景。最后,建议的调查为未来在多学科交叉领域的探索提供了路线图,强调了推动知识和创新边界的最终目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Question Answering: A survey of the state-of-the-art
Video Question Answering (VideoQA) emerges as a prominent trend in the domain of Artificial Intelligence, Computer Vision, and Natural Language Processing. It involves developing systems capable of understanding, analyzing, and responding to questions about the content of videos. The Proposed survey presents an in-depth overview of the current landscape of Question Answering, shedding light on the challenges, methodologies, datasets, and innovative approaches in the domain. The key components of the Video Question Answering (VideoQA) framework include video feature extraction, question processing, reasoning, and response generation. It underscores the importance of datasets in shaping VideoQA research and the diversity of question types, from factual inquiries to spatial and temporal reasoning. The survey highlights the ongoing research directions and future prospects for VideoQA. Finally, the proposed survey gives a road map for future explorations at the intersection of multiple disciplines, emphasizing the ultimate objective of pushing the boundaries of knowledge and innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信