{"title":"带多孔层声腔的比例边界有限元法","authors":"A.L.N. Pramod","doi":"10.1016/j.enganabound.2024.106003","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the scaled boundary finite element method (SBFEM) is used to predict the frequency response of an acoustic cavity with a porous layer based on Biot–Allard theory. For the porous material, both the solid and the fluid displacements are considered as the primary variables. Scaled boundary shape functions are used to interpolate the acoustic pressure within the acoustic cavity, and the solid and fluid displacements in the porous material. The material matrices of the porous material are decomposed in such a way that the elemental matrices are real and frequency independent. This allows the elemental matrices to be computed and stored for a given mesh and is used for each frequency increment thus reducing the number of computations. Numerical examples are presented to show the computational efficiency of the SBFEM in predicting the frequency response of a porous material excited with acoustic cavity.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106003"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaled boundary finite element method for an acoustic cavity with porous layer\",\"authors\":\"A.L.N. Pramod\",\"doi\":\"10.1016/j.enganabound.2024.106003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, the scaled boundary finite element method (SBFEM) is used to predict the frequency response of an acoustic cavity with a porous layer based on Biot–Allard theory. For the porous material, both the solid and the fluid displacements are considered as the primary variables. Scaled boundary shape functions are used to interpolate the acoustic pressure within the acoustic cavity, and the solid and fluid displacements in the porous material. The material matrices of the porous material are decomposed in such a way that the elemental matrices are real and frequency independent. This allows the elemental matrices to be computed and stored for a given mesh and is used for each frequency increment thus reducing the number of computations. Numerical examples are presented to show the computational efficiency of the SBFEM in predicting the frequency response of a porous material excited with acoustic cavity.</div></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"169 \",\"pages\":\"Article 106003\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724004764\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Scaled boundary finite element method for an acoustic cavity with porous layer
In this work, the scaled boundary finite element method (SBFEM) is used to predict the frequency response of an acoustic cavity with a porous layer based on Biot–Allard theory. For the porous material, both the solid and the fluid displacements are considered as the primary variables. Scaled boundary shape functions are used to interpolate the acoustic pressure within the acoustic cavity, and the solid and fluid displacements in the porous material. The material matrices of the porous material are decomposed in such a way that the elemental matrices are real and frequency independent. This allows the elemental matrices to be computed and stored for a given mesh and is used for each frequency increment thus reducing the number of computations. Numerical examples are presented to show the computational efficiency of the SBFEM in predicting the frequency response of a porous material excited with acoustic cavity.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.