{"title":"基于 BMINet 的场景文本检测和识别双重监督","authors":"Hanyang Wan, Ruoyun Liu, Li Yu","doi":"10.1016/j.image.2024.117226","DOIUrl":null,"url":null,"abstract":"<div><div>Scene text detection and recognition currently stand as prominent research areas in computer vision, boasting a broad spectrum of potential applications in fields such as intelligent driving and automated production. Existing mainstream methodologies, however, suffer from notable deficiencies including incomplete text region detection, excessive background noise, and a neglect of simultaneous global information and contextual dependencies. In this study, we introduce BMINet, an innovative scene text detection approach based on boundary fitting, paired with a double-supervised scene text recognition method that incorporates text region correction. The BMINet framework is primarily structured around a boundary fitting module and a multi-scale fusion module. The boundary fitting module samples a specific number of control points equidistantly along the predicted boundary and adjusts their positions to better align the detection box with the text shape. The multi-scale fusion module integrates information from multi-scale feature maps to expand the network’s receptive field. The double-supervised scene text recognition method, incorporating text region correction, integrates the image processing modules for rotating rectangle boxes and binary image segmentation. Additionally, it introduces a correction network to refine text region boundaries. This method integrates recognition techniques based on CTC loss and attention mechanisms, emphasizing texture details and contextual dependencies in text images to enhance network performance through dual supervision. Extensive ablation and comparison experiments confirm the efficacy of the two-stage model in achieving robust detection and recognition outcomes, achieving a recognition accuracy of 80.6% on the Total-Text dataset.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"130 ","pages":"Article 117226"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double supervision for scene text detection and recognition based on BMINet\",\"authors\":\"Hanyang Wan, Ruoyun Liu, Li Yu\",\"doi\":\"10.1016/j.image.2024.117226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Scene text detection and recognition currently stand as prominent research areas in computer vision, boasting a broad spectrum of potential applications in fields such as intelligent driving and automated production. Existing mainstream methodologies, however, suffer from notable deficiencies including incomplete text region detection, excessive background noise, and a neglect of simultaneous global information and contextual dependencies. In this study, we introduce BMINet, an innovative scene text detection approach based on boundary fitting, paired with a double-supervised scene text recognition method that incorporates text region correction. The BMINet framework is primarily structured around a boundary fitting module and a multi-scale fusion module. The boundary fitting module samples a specific number of control points equidistantly along the predicted boundary and adjusts their positions to better align the detection box with the text shape. The multi-scale fusion module integrates information from multi-scale feature maps to expand the network’s receptive field. The double-supervised scene text recognition method, incorporating text region correction, integrates the image processing modules for rotating rectangle boxes and binary image segmentation. Additionally, it introduces a correction network to refine text region boundaries. This method integrates recognition techniques based on CTC loss and attention mechanisms, emphasizing texture details and contextual dependencies in text images to enhance network performance through dual supervision. Extensive ablation and comparison experiments confirm the efficacy of the two-stage model in achieving robust detection and recognition outcomes, achieving a recognition accuracy of 80.6% on the Total-Text dataset.</div></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"130 \",\"pages\":\"Article 117226\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524001279\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001279","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Double supervision for scene text detection and recognition based on BMINet
Scene text detection and recognition currently stand as prominent research areas in computer vision, boasting a broad spectrum of potential applications in fields such as intelligent driving and automated production. Existing mainstream methodologies, however, suffer from notable deficiencies including incomplete text region detection, excessive background noise, and a neglect of simultaneous global information and contextual dependencies. In this study, we introduce BMINet, an innovative scene text detection approach based on boundary fitting, paired with a double-supervised scene text recognition method that incorporates text region correction. The BMINet framework is primarily structured around a boundary fitting module and a multi-scale fusion module. The boundary fitting module samples a specific number of control points equidistantly along the predicted boundary and adjusts their positions to better align the detection box with the text shape. The multi-scale fusion module integrates information from multi-scale feature maps to expand the network’s receptive field. The double-supervised scene text recognition method, incorporating text region correction, integrates the image processing modules for rotating rectangle boxes and binary image segmentation. Additionally, it introduces a correction network to refine text region boundaries. This method integrates recognition techniques based on CTC loss and attention mechanisms, emphasizing texture details and contextual dependencies in text images to enhance network performance through dual supervision. Extensive ablation and comparison experiments confirm the efficacy of the two-stage model in achieving robust detection and recognition outcomes, achieving a recognition accuracy of 80.6% on the Total-Text dataset.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.