Yan Qiang , Zhixiong Li , Minzu Zhang , Tianci Duan , Liang Qi , Liejiang Wei , Wenqi Zhong
{"title":"小叶形状对 BMHV 左心室血流模式的影响","authors":"Yan Qiang , Zhixiong Li , Minzu Zhang , Tianci Duan , Liang Qi , Liejiang Wei , Wenqi Zhong","doi":"10.1016/j.expthermflusci.2024.111343","DOIUrl":null,"url":null,"abstract":"<div><div>When a bileaflet mechanical heart valve is surgically implanted into the body, the downstream left ventricular blood flow pattern becomes complex, which is directly related to many postoperative complications. To investigate the hemodynamic properties associated with mechanical heart valve design, we built a left heart circulatory pulsatile flow generation system to simulate left ventricular flow and pressure under physiological conditions. We used time-resolved particle image velocimetry to study left ventricular blood flow downstream of two types of bileaflet mechanical heart valve: one with planar leaflets and one with cambered leaflets. Blood flow downstream of two different bileaflet mechanical valve shapes was assessed. The experimental results show that the bileaflet valve with a triple-jet pattern creates a three-dimensional vortex ring with a complex topology. In addition, the robust jet mode can introduce high shear stresses into the ventricular blood flow. Compared with the planar valve, the jet produced by the cambered valve has a more uniform velocity distribution, its vortex structure moves farther, and its shear stress distribution is more straightforward and continuous. Furthermore, the channel formed between the cambered valve vortex structure and the left ventricle wall surface is highly favorable for scouring the apical position and facilitating the transport of blood to the aortic orifice. Therefore, the shape of the leaflets of a bileaflet mechanical valve can significantly impact the left ventricular blood flow pattern and the blood transport process. Rational optimization of the design of the leaflet shape and improvement of the mechanical valve’s hemodynamic characteristics can reduce complications after valve replacement.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of leaflet shape on the left ventricular blood flow pattern in BMHVs\",\"authors\":\"Yan Qiang , Zhixiong Li , Minzu Zhang , Tianci Duan , Liang Qi , Liejiang Wei , Wenqi Zhong\",\"doi\":\"10.1016/j.expthermflusci.2024.111343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When a bileaflet mechanical heart valve is surgically implanted into the body, the downstream left ventricular blood flow pattern becomes complex, which is directly related to many postoperative complications. To investigate the hemodynamic properties associated with mechanical heart valve design, we built a left heart circulatory pulsatile flow generation system to simulate left ventricular flow and pressure under physiological conditions. We used time-resolved particle image velocimetry to study left ventricular blood flow downstream of two types of bileaflet mechanical heart valve: one with planar leaflets and one with cambered leaflets. Blood flow downstream of two different bileaflet mechanical valve shapes was assessed. The experimental results show that the bileaflet valve with a triple-jet pattern creates a three-dimensional vortex ring with a complex topology. In addition, the robust jet mode can introduce high shear stresses into the ventricular blood flow. Compared with the planar valve, the jet produced by the cambered valve has a more uniform velocity distribution, its vortex structure moves farther, and its shear stress distribution is more straightforward and continuous. Furthermore, the channel formed between the cambered valve vortex structure and the left ventricle wall surface is highly favorable for scouring the apical position and facilitating the transport of blood to the aortic orifice. Therefore, the shape of the leaflets of a bileaflet mechanical valve can significantly impact the left ventricular blood flow pattern and the blood transport process. Rational optimization of the design of the leaflet shape and improvement of the mechanical valve’s hemodynamic characteristics can reduce complications after valve replacement.</div></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724002127\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002127","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of leaflet shape on the left ventricular blood flow pattern in BMHVs
When a bileaflet mechanical heart valve is surgically implanted into the body, the downstream left ventricular blood flow pattern becomes complex, which is directly related to many postoperative complications. To investigate the hemodynamic properties associated with mechanical heart valve design, we built a left heart circulatory pulsatile flow generation system to simulate left ventricular flow and pressure under physiological conditions. We used time-resolved particle image velocimetry to study left ventricular blood flow downstream of two types of bileaflet mechanical heart valve: one with planar leaflets and one with cambered leaflets. Blood flow downstream of two different bileaflet mechanical valve shapes was assessed. The experimental results show that the bileaflet valve with a triple-jet pattern creates a three-dimensional vortex ring with a complex topology. In addition, the robust jet mode can introduce high shear stresses into the ventricular blood flow. Compared with the planar valve, the jet produced by the cambered valve has a more uniform velocity distribution, its vortex structure moves farther, and its shear stress distribution is more straightforward and continuous. Furthermore, the channel formed between the cambered valve vortex structure and the left ventricle wall surface is highly favorable for scouring the apical position and facilitating the transport of blood to the aortic orifice. Therefore, the shape of the leaflets of a bileaflet mechanical valve can significantly impact the left ventricular blood flow pattern and the blood transport process. Rational optimization of the design of the leaflet shape and improvement of the mechanical valve’s hemodynamic characteristics can reduce complications after valve replacement.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.