第一段渗滤与回收

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Elisabetta Candellero , Tom Garcia-Sanchez
{"title":"第一段渗滤与回收","authors":"Elisabetta Candellero ,&nbsp;Tom Garcia-Sanchez","doi":"10.1016/j.spa.2024.104512","DOIUrl":null,"url":null,"abstract":"<div><div>First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph <span><math><mi>G</mi></math></span> place a red particle at a reference vertex <span><math><mi>o</mi></math></span> and colorless particles (seeds) at all other vertices. The red particle starts spreading a <em>red first passage percolation</em> of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, when a clock rings the corresponding <em>red vertex turns black</em>. For <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote the size of the longest red path and of the largest red cluster present at time <span><math><mi>t</mi></math></span>. If <span><math><mi>G</mi></math></span> is the semi-line, then for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mo>log</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In contrast, if <span><math><mi>G</mi></math></span> is an infinite Galton–Watson tree with offspring mean <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> then, for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, while <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mi>t</mi></mrow></msup></mrow></mfrac><mo>≤</mo><mn>1</mn></mrow></math></span>, for all <span><math><mrow><mi>c</mi><mo>&gt;</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Also, almost surely as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is of order at most <span><math><mi>t</mi></math></span>. Furthermore, if we restrict our attention to bounded-degree graphs, then for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> there is a critical value <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> so that for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≤</mo><mi>ɛ</mi></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104512"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First passage percolation with recovery\",\"authors\":\"Elisabetta Candellero ,&nbsp;Tom Garcia-Sanchez\",\"doi\":\"10.1016/j.spa.2024.104512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph <span><math><mi>G</mi></math></span> place a red particle at a reference vertex <span><math><mi>o</mi></math></span> and colorless particles (seeds) at all other vertices. The red particle starts spreading a <em>red first passage percolation</em> of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, when a clock rings the corresponding <em>red vertex turns black</em>. For <span><math><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denote the size of the longest red path and of the largest red cluster present at time <span><math><mi>t</mi></math></span>. If <span><math><mi>G</mi></math></span> is the semi-line, then for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mo>log</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. In contrast, if <span><math><mi>G</mi></math></span> is an infinite Galton–Watson tree with offspring mean <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> then, for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>lim inf</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>log</mo><mo>log</mo><mi>t</mi></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≥</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>, while <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>c</mi><mi>t</mi></mrow></msup></mrow></mfrac><mo>≤</mo><mn>1</mn></mrow></math></span>, for all <span><math><mrow><mi>c</mi><mo>&gt;</mo><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Also, almost surely as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> is of order at most <span><math><mi>t</mi></math></span>. Furthermore, if we restrict our attention to bounded-degree graphs, then for any <span><math><mrow><mi>ɛ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> there is a critical value <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> so that for all <span><math><mrow><mi>γ</mi><mo>&gt;</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, almost surely <span><math><mrow><msub><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi></mrow></msub><mfrac><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow><mrow><mi>t</mi></mrow></mfrac><mo>≤</mo><mi>ɛ</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"179 \",\"pages\":\"Article 104512\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924002205\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

带恢复的第一通道渗流是一种旨在模拟流行病传播的过程。在一个图 G 上,在参考顶点 o 处放置一个红色粒子,在所有其他顶点放置无色粒子(种子)。红色粒子开始传播速率为 1 的红色第一通道渗流,而所有种子处于休眠状态。一旦进程到达某个种子,它就会变成红色,并开始传播红色第一通道渗流。所有顶点都配有独立的指数时钟,以 γ>0 的速率振铃,当时钟振铃时,相应的红色顶点变黑。对于 t≥0,让 Ht 和 Mt 表示 t 时刻存在的最长红色路径和最大红色集群的大小。如果 G 是半直线,那么对于所有 γ>0 几乎肯定 lim suptHtloglogtlogt=1 和 lim inftHt=0。相反,如果 G 是一棵后代均值为 m>1 的无限加尔顿-沃森树,那么对于所有 γ>0,几乎可以肯定 lim inftHtlogtt≥m-1 和 lim inftMtlogtt≥m-1,而对于所有 c>m-1,lim suptMtect≤1。此外,如果我们把注意力限制在有界度图上,那么对于任何 ɛ>0 都有一个临界值 γc>0,这样对于所有 γ>γc,几乎可以肯定 lim suptMtt≤ɛ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First passage percolation with recovery
First passage percolation with recovery is a process aimed at modeling the spread of epidemics. On a graph G place a red particle at a reference vertex o and colorless particles (seeds) at all other vertices. The red particle starts spreading a red first passage percolation of rate 1, while all seeds are dormant. As soon as a seed is reached by the process, it turns red and starts spreading red first passage percolation. All vertices are equipped with independent exponential clocks ringing at rate γ>0, when a clock rings the corresponding red vertex turns black. For t0, let Ht and Mt denote the size of the longest red path and of the largest red cluster present at time t. If G is the semi-line, then for all γ>0 almost surely lim suptHtloglogtlogt=1 and lim inftHt=0. In contrast, if G is an infinite Galton–Watson tree with offspring mean m>1 then, for all γ>0, almost surely lim inftHtlogttm1 and lim inftMtloglogttm1, while lim suptMtect1, for all c>m1. Also, almost surely as t, for all γ>0 Ht is of order at most t. Furthermore, if we restrict our attention to bounded-degree graphs, then for any ɛ>0 there is a critical value γc>0 so that for all γ>γc, almost surely lim suptMttɛ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信