复多项式环中微分算子的表征

IF 0.5 4区 数学 Q3 MATHEMATICS
Włodzimierz Fechner , Eszter Gselmann
{"title":"复多项式环中微分算子的表征","authors":"Włodzimierz Fechner ,&nbsp;Eszter Gselmann","doi":"10.1016/j.indag.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>The paper aims to provide a full characterization of all operators <span><math><mrow><mi>T</mi><mo>:</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>→</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> acting on the space of all complex polynomials that satisfy the Leibniz rule <span><span><span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mi>⋅</mi><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mi>⋅</mi><mi>g</mi><mo>+</mo><mi>f</mi><mi>⋅</mi><mi>T</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span></span></span>for all <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume the linearity of <span><math><mi>T</mi></math></span>. As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 6","pages":"Pages 1294-1305"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of differential operators in the ring of complex polynomials\",\"authors\":\"Włodzimierz Fechner ,&nbsp;Eszter Gselmann\",\"doi\":\"10.1016/j.indag.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper aims to provide a full characterization of all operators <span><math><mrow><mi>T</mi><mo>:</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>→</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> acting on the space of all complex polynomials that satisfy the Leibniz rule <span><span><span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mi>⋅</mi><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mi>⋅</mi><mi>g</mi><mo>+</mo><mi>f</mi><mi>⋅</mi><mi>T</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span></span></span>for all <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume the linearity of <span><math><mi>T</mi></math></span>. As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 6\",\"pages\":\"Pages 1294-1305\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000892\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000892","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提供作用于所有复多项式空间的算子 T:P(ℂ)→P(ℂ) 的所有算子的完整特征,对于所有 f,g∈P(ℂ),这些算子满足莱布尼兹规则 T(f⋅g)=T(f)⋅g+f⋅T(g) 。我们将看到,与众所周知的函数空间定理相反,这里不仅有微分算子,还有许多其他解。根据我们的主要结果,我们还推导出两个推论,说明在某些特殊情况下,满足莱布尼兹规则的算子具有某种特殊形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of differential operators in the ring of complex polynomials
The paper aims to provide a full characterization of all operators T:P()P() acting on the space of all complex polynomials that satisfy the Leibniz rule T(fg)=T(f)g+fT(g)for all f,gP(). We do not assume the linearity of T. As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信