{"title":"复多项式环中微分算子的表征","authors":"Włodzimierz Fechner , Eszter Gselmann","doi":"10.1016/j.indag.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><div>The paper aims to provide a full characterization of all operators <span><math><mrow><mi>T</mi><mo>:</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>→</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> acting on the space of all complex polynomials that satisfy the Leibniz rule <span><span><span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mi>⋅</mi><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mi>⋅</mi><mi>g</mi><mo>+</mo><mi>f</mi><mi>⋅</mi><mi>T</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span></span></span>for all <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume the linearity of <span><math><mi>T</mi></math></span>. As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 6","pages":"Pages 1294-1305"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of differential operators in the ring of complex polynomials\",\"authors\":\"Włodzimierz Fechner , Eszter Gselmann\",\"doi\":\"10.1016/j.indag.2024.07.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper aims to provide a full characterization of all operators <span><math><mrow><mi>T</mi><mo>:</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow><mo>→</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span> acting on the space of all complex polynomials that satisfy the Leibniz rule <span><span><span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mi>⋅</mi><mi>g</mi><mo>)</mo></mrow><mo>=</mo><mi>T</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mi>⋅</mi><mi>g</mi><mo>+</mo><mi>f</mi><mi>⋅</mi><mi>T</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span></span></span>for all <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>P</mi><mrow><mo>(</mo><mi>ℂ</mi><mo>)</mo></mrow></mrow></math></span>. We do not assume the linearity of <span><math><mi>T</mi></math></span>. As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 6\",\"pages\":\"Pages 1294-1305\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000892\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000892","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A characterization of differential operators in the ring of complex polynomials
The paper aims to provide a full characterization of all operators acting on the space of all complex polynomials that satisfy the Leibniz rule for all . We do not assume the linearity of . As we will see, contrary to the well-known theorems for function spaces there are many other solutions here, not only differential operators. From our main result, we also derive two corollaries, showing that in some special cases operators that satisfy the Leibniz rule have some particular form.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.