Xingyu Chen , Weihua Zhang , Haijian Bai , Heng Ding , Mengfan Li , Wenjuan Huang
{"title":"LFF: 无车道环境中基于注意力分配的跟车行为框架","authors":"Xingyu Chen , Weihua Zhang , Haijian Bai , Heng Ding , Mengfan Li , Wenjuan Huang","doi":"10.1016/j.trc.2024.104883","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of autonomous driving technology, current autonomous vehicles (AVs) typically rely on lane markings and parameters for operation despite their advanced perception capabilities. This research aims to develop a Lane-Free Following (LFF) framework to address behavior planning for AVs in environments lacking clear lane markings. The LFF utilizes decision modules, such as Monitoring Zones, Focus Zones, and Passing Corridors, to dynamically select the most appropriate following strategy. It integrates a Multi-Target Following Model (MT-IDM) and an attention allocation mechanism to optimize acceleration control by adjusting attention concentration levels. Initially, we examine the stability of multi-target following and determine the stability region on a two-dimensional plane using specific stability criteria. Subsequently, the LFF is integrated with the lateral model of the Intelligent Agent Model (IAM), and calibrated and validated using lane-free traffic data from Hefei, China, and Chennai, India. Simulation results demonstrate the LFF’s high accuracy across various vehicle types. In simulations conducted on open boundary roads and virtual circular roads with varying widths and traffic densities, the LFF showed enhanced driving comfort and efficiency. This optimization of road widths and densities improved traffic flow and road space utilization compared to traditional lane-based traffic. In congested start conditions on circular roads, we compared the uniform attention allocation mode (LFF-UA), the concentrated attention allocation mode (LFF-CA), and the High-Speed Social Force Model (HSFM). Results indicated that the HSFM excels in velocity and flow, offering faster startup efficiency. The LFF-UA, while maintaining efficiency, evenly distributed attention to neighboring preceding vehicles, enhancing driving safety and reducing fuel consumption and emissions. This research addresses current issues in mixed traffic environments and provides theoretical references for the future application of connected autonomous vehicles in lane-free environments.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"169 ","pages":"Article 104883"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LFF: An attention allocation-based following behavior framework in lane-free environments\",\"authors\":\"Xingyu Chen , Weihua Zhang , Haijian Bai , Heng Ding , Mengfan Li , Wenjuan Huang\",\"doi\":\"10.1016/j.trc.2024.104883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid advancement of autonomous driving technology, current autonomous vehicles (AVs) typically rely on lane markings and parameters for operation despite their advanced perception capabilities. This research aims to develop a Lane-Free Following (LFF) framework to address behavior planning for AVs in environments lacking clear lane markings. The LFF utilizes decision modules, such as Monitoring Zones, Focus Zones, and Passing Corridors, to dynamically select the most appropriate following strategy. It integrates a Multi-Target Following Model (MT-IDM) and an attention allocation mechanism to optimize acceleration control by adjusting attention concentration levels. Initially, we examine the stability of multi-target following and determine the stability region on a two-dimensional plane using specific stability criteria. Subsequently, the LFF is integrated with the lateral model of the Intelligent Agent Model (IAM), and calibrated and validated using lane-free traffic data from Hefei, China, and Chennai, India. Simulation results demonstrate the LFF’s high accuracy across various vehicle types. In simulations conducted on open boundary roads and virtual circular roads with varying widths and traffic densities, the LFF showed enhanced driving comfort and efficiency. This optimization of road widths and densities improved traffic flow and road space utilization compared to traditional lane-based traffic. In congested start conditions on circular roads, we compared the uniform attention allocation mode (LFF-UA), the concentrated attention allocation mode (LFF-CA), and the High-Speed Social Force Model (HSFM). Results indicated that the HSFM excels in velocity and flow, offering faster startup efficiency. The LFF-UA, while maintaining efficiency, evenly distributed attention to neighboring preceding vehicles, enhancing driving safety and reducing fuel consumption and emissions. This research addresses current issues in mixed traffic environments and provides theoretical references for the future application of connected autonomous vehicles in lane-free environments.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"169 \",\"pages\":\"Article 104883\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24004042\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004042","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
LFF: An attention allocation-based following behavior framework in lane-free environments
With the rapid advancement of autonomous driving technology, current autonomous vehicles (AVs) typically rely on lane markings and parameters for operation despite their advanced perception capabilities. This research aims to develop a Lane-Free Following (LFF) framework to address behavior planning for AVs in environments lacking clear lane markings. The LFF utilizes decision modules, such as Monitoring Zones, Focus Zones, and Passing Corridors, to dynamically select the most appropriate following strategy. It integrates a Multi-Target Following Model (MT-IDM) and an attention allocation mechanism to optimize acceleration control by adjusting attention concentration levels. Initially, we examine the stability of multi-target following and determine the stability region on a two-dimensional plane using specific stability criteria. Subsequently, the LFF is integrated with the lateral model of the Intelligent Agent Model (IAM), and calibrated and validated using lane-free traffic data from Hefei, China, and Chennai, India. Simulation results demonstrate the LFF’s high accuracy across various vehicle types. In simulations conducted on open boundary roads and virtual circular roads with varying widths and traffic densities, the LFF showed enhanced driving comfort and efficiency. This optimization of road widths and densities improved traffic flow and road space utilization compared to traditional lane-based traffic. In congested start conditions on circular roads, we compared the uniform attention allocation mode (LFF-UA), the concentrated attention allocation mode (LFF-CA), and the High-Speed Social Force Model (HSFM). Results indicated that the HSFM excels in velocity and flow, offering faster startup efficiency. The LFF-UA, while maintaining efficiency, evenly distributed attention to neighboring preceding vehicles, enhancing driving safety and reducing fuel consumption and emissions. This research addresses current issues in mixed traffic environments and provides theoretical references for the future application of connected autonomous vehicles in lane-free environments.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.