{"title":"基于钕2O3/石墨烯的高灵敏度电化学传感器用于监测棕榈油产品中的添加剂化合物","authors":"Rahmat Hidayat , Ganjar Fadillah , Febi Indah Fajarwati , Aldo Diandra Nur Ramdani , Qonita Awliya Hanif , Muhaimin","doi":"10.1016/j.matchemphys.2024.130121","DOIUrl":null,"url":null,"abstract":"<div><div>The use of additives, such as 3-monochloropropane-1,2-diol (3-MCPDs), in palm oil products can impact the product's quality and safety. Therefore, it is essential to have a sensitive and accurate detection method. This study explored the hydrothermal synthesis of Nd₂O₃/graphene (Nd₂O₃/G) composites and their application as electrochemical sensors for detecting 3-MCPDs as additive compounds in palm oil products. Different techniques for characterization, such as Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), supply evidence supporting the successful assembly and positive arrangement of the Nd₂O₃/G composite. The sensor's electrochemical efficacy is assessed concerning the detection of typical additives found in palm oil (3-MCPDs). The sensor performance test is studied by voltammetric technique. The modified sensor showed good analytical performance for detection of 3-MCPDs with improving electrocatalytic activity, electron transfer, and reduced charge transfer resistance (R<sub>ct</sub>). These modifications greatly enhance the sensor's ability to accurately detect 3-MCPDs with limit of detection of 0.65 μM. This developed sensor shows a great stability and accuracy, thus it has potential to apply in quality control and daily analysis process.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130121"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive electrochemical sensor based Nd2O3/graphene for monitoring additive compounds in palm oil product\",\"authors\":\"Rahmat Hidayat , Ganjar Fadillah , Febi Indah Fajarwati , Aldo Diandra Nur Ramdani , Qonita Awliya Hanif , Muhaimin\",\"doi\":\"10.1016/j.matchemphys.2024.130121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of additives, such as 3-monochloropropane-1,2-diol (3-MCPDs), in palm oil products can impact the product's quality and safety. Therefore, it is essential to have a sensitive and accurate detection method. This study explored the hydrothermal synthesis of Nd₂O₃/graphene (Nd₂O₃/G) composites and their application as electrochemical sensors for detecting 3-MCPDs as additive compounds in palm oil products. Different techniques for characterization, such as Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), supply evidence supporting the successful assembly and positive arrangement of the Nd₂O₃/G composite. The sensor's electrochemical efficacy is assessed concerning the detection of typical additives found in palm oil (3-MCPDs). The sensor performance test is studied by voltammetric technique. The modified sensor showed good analytical performance for detection of 3-MCPDs with improving electrocatalytic activity, electron transfer, and reduced charge transfer resistance (R<sub>ct</sub>). These modifications greatly enhance the sensor's ability to accurately detect 3-MCPDs with limit of detection of 0.65 μM. This developed sensor shows a great stability and accuracy, thus it has potential to apply in quality control and daily analysis process.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130121\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012495\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012495","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly sensitive electrochemical sensor based Nd2O3/graphene for monitoring additive compounds in palm oil product
The use of additives, such as 3-monochloropropane-1,2-diol (3-MCPDs), in palm oil products can impact the product's quality and safety. Therefore, it is essential to have a sensitive and accurate detection method. This study explored the hydrothermal synthesis of Nd₂O₃/graphene (Nd₂O₃/G) composites and their application as electrochemical sensors for detecting 3-MCPDs as additive compounds in palm oil products. Different techniques for characterization, such as Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM), supply evidence supporting the successful assembly and positive arrangement of the Nd₂O₃/G composite. The sensor's electrochemical efficacy is assessed concerning the detection of typical additives found in palm oil (3-MCPDs). The sensor performance test is studied by voltammetric technique. The modified sensor showed good analytical performance for detection of 3-MCPDs with improving electrocatalytic activity, electron transfer, and reduced charge transfer resistance (Rct). These modifications greatly enhance the sensor's ability to accurately detect 3-MCPDs with limit of detection of 0.65 μM. This developed sensor shows a great stability and accuracy, thus it has potential to apply in quality control and daily analysis process.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.