Gang Pan , Xin Guan , Haiyang Jiang , Yongnan Liu , Huayang Wu , Hongyang Chen , Tomoaki Ohtsuki , Zhu Han
{"title":"5G 车辆网络中的联合智能优化经济调度和电动汽车充电","authors":"Gang Pan , Xin Guan , Haiyang Jiang , Yongnan Liu , Huayang Wu , Hongyang Chen , Tomoaki Ohtsuki , Zhu Han","doi":"10.1016/j.comnet.2024.110872","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, with the rapid development of 5G networks, the road traffic network composed of vehicles with different energy sources has become more and more complex, and the problems of environmental pollution and road congestion have also become increasingly serious. Electric vehicles are favored by people due to their environmental protection and energy-saving characteristics. However, improper charging dispatching will cause excess energy in charging stations, affecting the power grid and road traffic, such as energy shortages and lower traffic throughput. Therefore, how to design a reasonable charging strategy that can maximize the user’s charging satisfaction and consume the energy of the charging station as much as possible becomes a challenge. Meanwhile, this strategy should consider power economic dispatch to reduce power generation costs and polluting gas emissions. With the support of 5G’s high-bandwidth and low-latency characteristics, this paper designs an intelligent charging model which indirectly reflects the charging satisfaction through the time cost, energy consumption cost, charging cost, and the user’s range anxiety, while consuming the remaining energy of the charging station as much as possible. Due to the uncertainty of wind and photovoltaic power generation, this paper proposes a two-stage economic dispatch model to improve the accuracy of power dispatch and reduce power generation costs and carbon emissions. Due to the highly variable traffic environment and energy demand, we employ proximal policy optimization-based deep reinforcement learning algorithms to realize electric vehicle charging dispatching and charging station power dispatching. Numerical results show the efficiency of our proposed strategy for electric vehicle charging in terms of the convergence speed.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110872"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint intelligent optimizing economic dispatch and electric vehicles charging in 5G vehicular networks\",\"authors\":\"Gang Pan , Xin Guan , Haiyang Jiang , Yongnan Liu , Huayang Wu , Hongyang Chen , Tomoaki Ohtsuki , Zhu Han\",\"doi\":\"10.1016/j.comnet.2024.110872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, with the rapid development of 5G networks, the road traffic network composed of vehicles with different energy sources has become more and more complex, and the problems of environmental pollution and road congestion have also become increasingly serious. Electric vehicles are favored by people due to their environmental protection and energy-saving characteristics. However, improper charging dispatching will cause excess energy in charging stations, affecting the power grid and road traffic, such as energy shortages and lower traffic throughput. Therefore, how to design a reasonable charging strategy that can maximize the user’s charging satisfaction and consume the energy of the charging station as much as possible becomes a challenge. Meanwhile, this strategy should consider power economic dispatch to reduce power generation costs and polluting gas emissions. With the support of 5G’s high-bandwidth and low-latency characteristics, this paper designs an intelligent charging model which indirectly reflects the charging satisfaction through the time cost, energy consumption cost, charging cost, and the user’s range anxiety, while consuming the remaining energy of the charging station as much as possible. Due to the uncertainty of wind and photovoltaic power generation, this paper proposes a two-stage economic dispatch model to improve the accuracy of power dispatch and reduce power generation costs and carbon emissions. Due to the highly variable traffic environment and energy demand, we employ proximal policy optimization-based deep reinforcement learning algorithms to realize electric vehicle charging dispatching and charging station power dispatching. Numerical results show the efficiency of our proposed strategy for electric vehicle charging in terms of the convergence speed.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"255 \",\"pages\":\"Article 110872\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624007047\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624007047","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Joint intelligent optimizing economic dispatch and electric vehicles charging in 5G vehicular networks
In recent years, with the rapid development of 5G networks, the road traffic network composed of vehicles with different energy sources has become more and more complex, and the problems of environmental pollution and road congestion have also become increasingly serious. Electric vehicles are favored by people due to their environmental protection and energy-saving characteristics. However, improper charging dispatching will cause excess energy in charging stations, affecting the power grid and road traffic, such as energy shortages and lower traffic throughput. Therefore, how to design a reasonable charging strategy that can maximize the user’s charging satisfaction and consume the energy of the charging station as much as possible becomes a challenge. Meanwhile, this strategy should consider power economic dispatch to reduce power generation costs and polluting gas emissions. With the support of 5G’s high-bandwidth and low-latency characteristics, this paper designs an intelligent charging model which indirectly reflects the charging satisfaction through the time cost, energy consumption cost, charging cost, and the user’s range anxiety, while consuming the remaining energy of the charging station as much as possible. Due to the uncertainty of wind and photovoltaic power generation, this paper proposes a two-stage economic dispatch model to improve the accuracy of power dispatch and reduce power generation costs and carbon emissions. Due to the highly variable traffic environment and energy demand, we employ proximal policy optimization-based deep reinforcement learning algorithms to realize electric vehicle charging dispatching and charging station power dispatching. Numerical results show the efficiency of our proposed strategy for electric vehicle charging in terms of the convergence speed.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.