薄域中带有旋转的布森斯克方程的静力学近似值

IF 1.3 2区 数学 Q1 MATHEMATICS
Xueke Pu , Wenli Zhou
{"title":"薄域中带有旋转的布森斯克方程的静力学近似值","authors":"Xueke Pu ,&nbsp;Wenli Zhou","doi":"10.1016/j.na.2024.113688","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the global existence of strong solutions to the primitive equations with only horizontal viscosity and diffusivity is established under the assumption of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with additional regularity <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>. Moreover, we prove that the scaled Boussinesq equations with rotation strongly converge to the primitive equations with only horizontal viscosity and diffusivity, with the convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mi>β</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>&lt;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>&lt;</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, in the cases of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively, as the aspect ratio <span><math><mi>λ</mi></math></span> goes to zero.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113688"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hydrostatic approximation of the Boussinesq equations with rotation in a thin domain\",\"authors\":\"Xueke Pu ,&nbsp;Wenli Zhou\",\"doi\":\"10.1016/j.na.2024.113688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the global existence of strong solutions to the primitive equations with only horizontal viscosity and diffusivity is established under the assumption of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with additional regularity <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>. Moreover, we prove that the scaled Boussinesq equations with rotation strongly converge to the primitive equations with only horizontal viscosity and diffusivity, with the convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mi>β</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>&lt;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>&lt;</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, in the cases of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively, as the aspect ratio <span><math><mi>λ</mi></math></span> goes to zero.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113688\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002074\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002074","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在初始数据(v0,T0)∈H1 和附加正则性∂zv0∈L4 的假设下,建立了只有水平粘性和扩散性的原始方程的强解的全局存在性。此外,我们证明了带旋转的缩放布森斯克方程强烈收敛于只有水平粘性和扩散性的原始方程,收敛速率为 O(λmin{2,β-2,γ-2}/2)(2<;β,γ<∞),分别适用于初始数据(v0,T0)∈H1 且∂zv0∈L4 和初始数据(v0,T0)∈H2 的情况,当纵横比 λ 变为零时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hydrostatic approximation of the Boussinesq equations with rotation in a thin domain
In this paper, the global existence of strong solutions to the primitive equations with only horizontal viscosity and diffusivity is established under the assumption of initial data (v0,T0)H1 with additional regularity zv0L4. Moreover, we prove that the scaled Boussinesq equations with rotation strongly converge to the primitive equations with only horizontal viscosity and diffusivity, with the convergence rate O(λmin{2,β2,γ2}/2)(2<β,γ<), in the cases of initial data (v0,T0)H1 with zv0L4 and initial data (v0,T0)H2, respectively, as the aspect ratio λ goes to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信