从 SMILES 预测分子性质的深度学习方法。

Gretchen Bonilla-Caraballo, Manuel Rodriguez-Martinez
{"title":"从 SMILES 预测分子性质的深度学习方法。","authors":"Gretchen Bonilla-Caraballo, Manuel Rodriguez-Martinez","doi":"10.1007/978-3-031-67447-1_9","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning methods have been proposed in lieu of simulations to predict chemical properties of molecules. The trade-off here is paying for the training time once, in exchange for instant predictions on the input data. However, many of these methods rely heavily on feature engineering to prepare the data for these models. Moreover, the use of molecular structural information has been limited, despite having such information encoded in the Simplified Molecular Input Line Entry System (SMILES) format. In this paper we present a framework that relies on SMILES data to predict molecular properties. Our methods are based on 1-D Convolutional Networks and do not require complex feature engineering. Our methods can be applied to learn molecular properties from base data, thus making them accessible to a wider audience. Our experiments show that this method can predict the molecular weight and XLogP properties without any encoding of complex chemical rules.</p>","PeriodicalId":520278,"journal":{"name":"Proceedings of the International Symposium on Intelligent Computing and Networking 2024 : (ISICN 2024). International Symposium on Intelligent Computing and Networking (1st : 2024 : San Juan, P.R.)","volume":"1094 ","pages":"119-138"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Methods to Help Predict Properties of Molecules from SMILES.\",\"authors\":\"Gretchen Bonilla-Caraballo, Manuel Rodriguez-Martinez\",\"doi\":\"10.1007/978-3-031-67447-1_9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Machine learning methods have been proposed in lieu of simulations to predict chemical properties of molecules. The trade-off here is paying for the training time once, in exchange for instant predictions on the input data. However, many of these methods rely heavily on feature engineering to prepare the data for these models. Moreover, the use of molecular structural information has been limited, despite having such information encoded in the Simplified Molecular Input Line Entry System (SMILES) format. In this paper we present a framework that relies on SMILES data to predict molecular properties. Our methods are based on 1-D Convolutional Networks and do not require complex feature engineering. Our methods can be applied to learn molecular properties from base data, thus making them accessible to a wider audience. Our experiments show that this method can predict the molecular weight and XLogP properties without any encoding of complex chemical rules.</p>\",\"PeriodicalId\":520278,\"journal\":{\"name\":\"Proceedings of the International Symposium on Intelligent Computing and Networking 2024 : (ISICN 2024). International Symposium on Intelligent Computing and Networking (1st : 2024 : San Juan, P.R.)\",\"volume\":\"1094 \",\"pages\":\"119-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Symposium on Intelligent Computing and Networking 2024 : (ISICN 2024). International Symposium on Intelligent Computing and Networking (1st : 2024 : San Juan, P.R.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-67447-1_9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Intelligent Computing and Networking 2024 : (ISICN 2024). International Symposium on Intelligent Computing and Networking (1st : 2024 : San Juan, P.R.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-67447-1_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有人提出用机器学习方法代替模拟来预测分子的化学性质。这样做的好处是,只需支付一次训练时间,就能换取对输入数据的即时预测。然而,这些方法中的许多都严重依赖特征工程来为这些模型准备数据。此外,尽管分子结构信息已被编码为简化分子输入行输入系统(SMILES)格式,但分子结构信息的使用仍然有限。在本文中,我们提出了一个依靠 SMILES 数据预测分子特性的框架。我们的方法基于一维卷积网络,不需要复杂的特征工程。我们的方法可用于从基础数据中学习分子特性,从而让更多人了解这些方法。我们的实验表明,这种方法可以预测分子量和 XLogP 特性,而无需对复杂的化学规则进行编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Methods to Help Predict Properties of Molecules from SMILES.

Machine learning methods have been proposed in lieu of simulations to predict chemical properties of molecules. The trade-off here is paying for the training time once, in exchange for instant predictions on the input data. However, many of these methods rely heavily on feature engineering to prepare the data for these models. Moreover, the use of molecular structural information has been limited, despite having such information encoded in the Simplified Molecular Input Line Entry System (SMILES) format. In this paper we present a framework that relies on SMILES data to predict molecular properties. Our methods are based on 1-D Convolutional Networks and do not require complex feature engineering. Our methods can be applied to learn molecular properties from base data, thus making them accessible to a wider audience. Our experiments show that this method can predict the molecular weight and XLogP properties without any encoding of complex chemical rules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信