Juan Segura-Vega, Allan González-Herrera, Ramón Molina-Bravo, Stefany Solano-González
{"title":"计算鉴定和表征来自新热带贝维氏菌分离物的几丁质酶 1 和几丁质酶 2。","authors":"Juan Segura-Vega, Allan González-Herrera, Ramón Molina-Bravo, Stefany Solano-González","doi":"10.3389/fbinf.2024.1434442","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The fungus <i>Beauveria bassiana</i> is widely used for agronomical applications, mainly in biological control. <i>B. bassiana</i> uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited.</p><p><strong>Methods: </strong>Eight complete <i>B. bassiana</i> genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates.</p><p><strong>Results: </strong>Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2.</p><p><strong>Conclusion: </strong>Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1434442"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527780/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of <i>Beauveria bassiana</i>.\",\"authors\":\"Juan Segura-Vega, Allan González-Herrera, Ramón Molina-Bravo, Stefany Solano-González\",\"doi\":\"10.3389/fbinf.2024.1434442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The fungus <i>Beauveria bassiana</i> is widely used for agronomical applications, mainly in biological control. <i>B. bassiana</i> uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited.</p><p><strong>Methods: </strong>Eight complete <i>B. bassiana</i> genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates.</p><p><strong>Results: </strong>Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2.</p><p><strong>Conclusion: </strong>Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"4 \",\"pages\":\"1434442\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2024.1434442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1434442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana.
Background: The fungus Beauveria bassiana is widely used for agronomical applications, mainly in biological control. B. bassiana uses chitinase enzymes to degrade chitin, a major chemical component found in insect exoskeletons and fungal cell walls. However, until recently, genomic information on neotropical isolates, as well as their metabolic and biotechnological potential, has been limited.
Methods: Eight complete B. bassiana genomes of Neotropical origin and three references were studied to identify chitinase genes and its corresponding proteins, which were curated and characterized using manual curation and computational tools. We conducted a computational study to highlight functional differences and similarities for chitinase proteins in these Neotropical isolates.
Results: Eleven chitinase 1 genes were identified, categorized as chitinase 1.1 and chitinase 1.2. Five chitinase 2 genes were identified but presented a higher sequence conservation across all sequences. Interestingly, physicochemical parameters were more similar between chitinase 1.1 and chitinase 2 than between chitinase 1.1 and 1.2.
Conclusion: Chitinases 1 and 2 demonstrated variations, especially within chitinase 1, which presented a potential paralog. These differences were observed in their physical parameters. Additionally, CHIT2 completely lacks a signal peptide. This implies that CHIT1 might be associated with infection processes, while CHIT2 could be involved in morphogenesis and cellular growth. Therefore, our work highlights the importance of computational studies on local isolates, providing valuable resources for further experimental validation. Intrinsic changes within local species can significantly impact our understanding of complex pathogen-host interactions and offer practical applications, such as biological control.