将细胞外 miRNA 与 mRNA 整合用于癌症研究的深度学习方法。

Tasbiraha Athaya, Xiaoman Li, Haiyan Hu
{"title":"将细胞外 miRNA 与 mRNA 整合用于癌症研究的深度学习方法。","authors":"Tasbiraha Athaya, Xiaoman Li, Haiyan Hu","doi":"10.1093/bioinformatics/btae653","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Extracellular miRNAs (exmiRs) and intracellular mRNAs both can serve as promising biomarkers and therapeutic targets for various diseases. However, exmiR expression data is often noisy, and obtaining intracellular mRNA expression data usually involves intrusive procedures. To gain valuable insights into disease mechanisms, it is thus essential to improve the quality of exmiR expression data and develop noninvasive methods for assessing intracellular mRNA expression.</p><p><strong>Results: </strong>We developed CrossPred, a deep-learning multi-encoder model for the cross-prediction of exmiRs and mRNAs. Utilizing contrastive learning, we created a shared embedding space to integrate exmiRs and mRNAs. This shared embedding was then used to predict intracellular mRNA expression from noisy exmiR data and to predict exmiR expression from intracellular mRNA data. We evaluated CrossPred on three types of cancers and assessed its effectiveness in predicting the expression levels of exmiRs and mRNAs. CrossPred outperformed the baseline encoder-decoder model, exmiR or mRNA-based models, and variational autoencoder models. Moreover, the integration of exmiR and mRNA data uncovered important exmiRs and mRNAs associated with cancer. Our study offers new insights into the bidirectional relationship between mRNAs and exmiRs.</p><p><strong>Availability and implementation: </strong>The datasets and tool are available at https://doi.org/10.5281/zenodo.13891508.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565234/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning method to integrate extracelluar miRNA with mRNA for cancer studies.\",\"authors\":\"Tasbiraha Athaya, Xiaoman Li, Haiyan Hu\",\"doi\":\"10.1093/bioinformatics/btae653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Extracellular miRNAs (exmiRs) and intracellular mRNAs both can serve as promising biomarkers and therapeutic targets for various diseases. However, exmiR expression data is often noisy, and obtaining intracellular mRNA expression data usually involves intrusive procedures. To gain valuable insights into disease mechanisms, it is thus essential to improve the quality of exmiR expression data and develop noninvasive methods for assessing intracellular mRNA expression.</p><p><strong>Results: </strong>We developed CrossPred, a deep-learning multi-encoder model for the cross-prediction of exmiRs and mRNAs. Utilizing contrastive learning, we created a shared embedding space to integrate exmiRs and mRNAs. This shared embedding was then used to predict intracellular mRNA expression from noisy exmiR data and to predict exmiR expression from intracellular mRNA data. We evaluated CrossPred on three types of cancers and assessed its effectiveness in predicting the expression levels of exmiRs and mRNAs. CrossPred outperformed the baseline encoder-decoder model, exmiR or mRNA-based models, and variational autoencoder models. Moreover, the integration of exmiR and mRNA data uncovered important exmiRs and mRNAs associated with cancer. Our study offers new insights into the bidirectional relationship between mRNAs and exmiRs.</p><p><strong>Availability and implementation: </strong>The datasets and tool are available at https://doi.org/10.5281/zenodo.13891508.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究动机细胞外 miRNAs(exmiRs)和细胞内 mRNAs 都可以作为有前景的生物标记物和各种疾病的治疗靶点。然而,外miRs表达数据通常比较嘈杂,而获取细胞内mRNA表达数据通常涉及侵入性程序。因此,要想获得对疾病机制的宝贵见解,就必须提高外显子R表达数据的质量,并开发评估细胞内mRNA表达的非侵入性方法:我们开发了 CrossPred,这是一种深度学习多编码器模型,用于外显子和 mRNA 的交叉预测。利用对比学习,我们创建了一个共享嵌入空间来整合外显子Rs和mRNAs。然后利用这种共享嵌入空间,从嘈杂的外显子R数据中预测细胞内mRNA的表达,并从细胞内mRNA数据中预测外显子R的表达。我们在三种癌症上对 CrossPred 进行了评估,并评估了它在预测外显子和 mRNA 表达水平方面的有效性。CrossPred 的表现优于基线编码器-解码器模型、基于 exmiR 或 mRNA 的模型以及变异自动编码器模型。此外,整合外显子R和mRNA数据还发现了与癌症相关的重要外显子R和mRNA。我们的研究为了解 mRNA 与 exmiRs 之间的双向关系提供了新的视角:数据集和工具可从 https://doi.org/10.5281/zenodo.13891508.Supplementary 信息中获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning method to integrate extracelluar miRNA with mRNA for cancer studies.

Motivation: Extracellular miRNAs (exmiRs) and intracellular mRNAs both can serve as promising biomarkers and therapeutic targets for various diseases. However, exmiR expression data is often noisy, and obtaining intracellular mRNA expression data usually involves intrusive procedures. To gain valuable insights into disease mechanisms, it is thus essential to improve the quality of exmiR expression data and develop noninvasive methods for assessing intracellular mRNA expression.

Results: We developed CrossPred, a deep-learning multi-encoder model for the cross-prediction of exmiRs and mRNAs. Utilizing contrastive learning, we created a shared embedding space to integrate exmiRs and mRNAs. This shared embedding was then used to predict intracellular mRNA expression from noisy exmiR data and to predict exmiR expression from intracellular mRNA data. We evaluated CrossPred on three types of cancers and assessed its effectiveness in predicting the expression levels of exmiRs and mRNAs. CrossPred outperformed the baseline encoder-decoder model, exmiR or mRNA-based models, and variational autoencoder models. Moreover, the integration of exmiR and mRNA data uncovered important exmiRs and mRNAs associated with cancer. Our study offers new insights into the bidirectional relationship between mRNAs and exmiRs.

Availability and implementation: The datasets and tool are available at https://doi.org/10.5281/zenodo.13891508.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信