部件层面的材料效率:我们能少用多少金属?

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Julian M Allwood, Omer Music
{"title":"部件层面的材料效率:我们能少用多少金属?","authors":"Julian M Allwood, Omer Music","doi":"10.1098/rsta.2023.0245","DOIUrl":null,"url":null,"abstract":"<p><p>Global production of steel and aluminium is a major driver of greenhouse gas emissions. Various processes might allow continued primary production of the two metals, but all depend on emissions-free electricity or carbon storage, and global capacity of these two key resources will be below demand for decades to come. As a result, zero-emissions steel and aluminium will mainly come from recycling, but supply will be lower than demand. This motivates demand reduction, and for the first time, this article estimates the inefficiency in current metal use by component type. The results demonstrate that around 80% of steel and 90% of aluminium liquid metal produced today may be unnecessary. Around 40% of liquid steel and 60% of liquid aluminium are never used in final components as they are removed along the supply chain of manufacturing. Of the metal that enters final service, approximately one-third could be saved by avoiding component over-specification. A further third could be saved, where the properties of metal are not used to their limits. These results point to specific opportunities for innovation in design and manufacturing technology, of which the highest priority is to re-think the use of sheet metal in construction.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2284","pages":"20230245"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Material efficiency at the component level: how much metal can we do without?\",\"authors\":\"Julian M Allwood, Omer Music\",\"doi\":\"10.1098/rsta.2023.0245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global production of steel and aluminium is a major driver of greenhouse gas emissions. Various processes might allow continued primary production of the two metals, but all depend on emissions-free electricity or carbon storage, and global capacity of these two key resources will be below demand for decades to come. As a result, zero-emissions steel and aluminium will mainly come from recycling, but supply will be lower than demand. This motivates demand reduction, and for the first time, this article estimates the inefficiency in current metal use by component type. The results demonstrate that around 80% of steel and 90% of aluminium liquid metal produced today may be unnecessary. Around 40% of liquid steel and 60% of liquid aluminium are never used in final components as they are removed along the supply chain of manufacturing. Of the metal that enters final service, approximately one-third could be saved by avoiding component over-specification. A further third could be saved, where the properties of metal are not used to their limits. These results point to specific opportunities for innovation in design and manufacturing technology, of which the highest priority is to re-think the use of sheet metal in construction.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2284\",\"pages\":\"20230245\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0245\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0245","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球钢铁和铝的生产是温室气体排放的主要驱动力。各种工艺都有可能使这两种金属的初级生产得以继续,但所有工艺都依赖于无排放的电力或碳储存,而这两种关键资源的全球产能在未来几十年内都将低于需求。因此,零排放钢铁和铝将主要来自回收利用,但供应量将低于需求量。因此,本文首次按部件类型估算了当前金属使用的低效率。结果表明,目前生产的约 80% 的钢材和 90% 的铝液金属可能是不必要的。约 40% 的液态钢和 60% 的液态铝从未用于最终组件,因为它们在制造供应链中被移除。在最终投入使用的金属中,约有三分之一可以通过避免部件规格过高而节省下来。如果金属的性能没有发挥到极限,还可以节省三分之一。这些结果为设计和制造技术的创新提供了具体的机会,其中最优先考虑的是重新思考金属板在建筑中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material efficiency at the component level: how much metal can we do without?

Global production of steel and aluminium is a major driver of greenhouse gas emissions. Various processes might allow continued primary production of the two metals, but all depend on emissions-free electricity or carbon storage, and global capacity of these two key resources will be below demand for decades to come. As a result, zero-emissions steel and aluminium will mainly come from recycling, but supply will be lower than demand. This motivates demand reduction, and for the first time, this article estimates the inefficiency in current metal use by component type. The results demonstrate that around 80% of steel and 90% of aluminium liquid metal produced today may be unnecessary. Around 40% of liquid steel and 60% of liquid aluminium are never used in final components as they are removed along the supply chain of manufacturing. Of the metal that enters final service, approximately one-third could be saved by avoiding component over-specification. A further third could be saved, where the properties of metal are not used to their limits. These results point to specific opportunities for innovation in design and manufacturing technology, of which the highest priority is to re-think the use of sheet metal in construction.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信