一个关键的反馈回路:建设电力基础设施和金属生产电气化。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Katrin E Daehn, Antoine Allanore, Elsa A Olivetti
{"title":"一个关键的反馈回路:建设电力基础设施和金属生产电气化。","authors":"Katrin E Daehn, Antoine Allanore, Elsa A Olivetti","doi":"10.1098/rsta.2023.0234","DOIUrl":null,"url":null,"abstract":"<p><p>Energy infrastructure requires metals, and metals production requires energy. A transparent, physical model of the metals-energy system is presented to explore under what conditions this dependence constrains or accelerates the transition to a net-zero economy. While the mineral (as high as 340 Mt yr<sup>-1</sup> iron ore, 210 Mt yr<sup>-1</sup> limestone, 250 Mt yr<sup>-1</sup> bauxite and 5.5 Gt yr<sup>-1</sup> copper ore in the 2040-2050 decade, assuming no improvements) and total energy (up to 22 EJ yr<sup>-1</sup>) requirements for building low-carbon energy infrastructure are significant, it compares favourably with the current extraction and energy use supporting the fossil fuel system (15 Gt yr<sup>-1</sup> fossil minerals and ~38 EJ yr<sup>-1</sup>). There are levers to significantly reduce material use and associated impacts over time. The metals industry can play a key reinforcing role in the transition by adapting to the increasing supply of renewable electricity. Specifically, direct electrolysis can extract metal from ore close to the thermodynamic limit, to make efficient use of low-C electricity. The unique features of emerging technologies for iron extraction, molten oxide electrolysis and molten sulphide electrolysis are considered in this evolving system. Electrification enables elegant separations and provides a pathway to build out infrastructure while reducing environmental impacts, though material efficiency measures will still be crucial to meet 2050 carbon budgets.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2284","pages":"20230234"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531905/pdf/","citationCount":"0","resultStr":"{\"title\":\"A key feedback loop: building electricity infrastructure and electrifying metals production.\",\"authors\":\"Katrin E Daehn, Antoine Allanore, Elsa A Olivetti\",\"doi\":\"10.1098/rsta.2023.0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy infrastructure requires metals, and metals production requires energy. A transparent, physical model of the metals-energy system is presented to explore under what conditions this dependence constrains or accelerates the transition to a net-zero economy. While the mineral (as high as 340 Mt yr<sup>-1</sup> iron ore, 210 Mt yr<sup>-1</sup> limestone, 250 Mt yr<sup>-1</sup> bauxite and 5.5 Gt yr<sup>-1</sup> copper ore in the 2040-2050 decade, assuming no improvements) and total energy (up to 22 EJ yr<sup>-1</sup>) requirements for building low-carbon energy infrastructure are significant, it compares favourably with the current extraction and energy use supporting the fossil fuel system (15 Gt yr<sup>-1</sup> fossil minerals and ~38 EJ yr<sup>-1</sup>). There are levers to significantly reduce material use and associated impacts over time. The metals industry can play a key reinforcing role in the transition by adapting to the increasing supply of renewable electricity. Specifically, direct electrolysis can extract metal from ore close to the thermodynamic limit, to make efficient use of low-C electricity. The unique features of emerging technologies for iron extraction, molten oxide electrolysis and molten sulphide electrolysis are considered in this evolving system. Electrification enables elegant separations and provides a pathway to build out infrastructure while reducing environmental impacts, though material efficiency measures will still be crucial to meet 2050 carbon budgets.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2284\",\"pages\":\"20230234\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0234\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0234","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

能源基础设施需要金属,金属生产需要能源。本文提出了一个透明的金属-能源系统物理模型,以探讨在何种条件下这种依赖性会限制或加速向净零经济的过渡。虽然建设低碳能源基础设施所需的矿物(假设没有任何改进,在 2040-2050 十年间,铁矿石高达 3.4 亿吨/年,石灰石高达 2.1 亿吨/年,铝土矿高达 2.5 亿吨/年,铜矿高达 5.5 Gt/年)和总能源(高达 22 EJ/年)非常可观,但与目前支持化石燃料系统的开采和能源使用(化石矿物 15 Gt/年,约 38 EJ/年)相比毫不逊色。随着时间的推移,有一些杠杆可以大幅减少材料的使用和相关影响。金属工业可以通过适应不断增加的可再生电力供应,在转型过程中发挥关键的强化作用。具体来说,直接电解可以从接近热力学极限的矿石中提取金属,从而有效利用低C电力。在这一不断发展的系统中,考虑了铁提取、熔融氧化物电解和熔融硫化物电解等新兴技术的独特性。电气化实现了优雅的分离,并为基础设施建设提供了途径,同时减少了对环境的影响,尽管材料效率措施对于实现 2050 年碳预算仍然至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A key feedback loop: building electricity infrastructure and electrifying metals production.

Energy infrastructure requires metals, and metals production requires energy. A transparent, physical model of the metals-energy system is presented to explore under what conditions this dependence constrains or accelerates the transition to a net-zero economy. While the mineral (as high as 340 Mt yr-1 iron ore, 210 Mt yr-1 limestone, 250 Mt yr-1 bauxite and 5.5 Gt yr-1 copper ore in the 2040-2050 decade, assuming no improvements) and total energy (up to 22 EJ yr-1) requirements for building low-carbon energy infrastructure are significant, it compares favourably with the current extraction and energy use supporting the fossil fuel system (15 Gt yr-1 fossil minerals and ~38 EJ yr-1). There are levers to significantly reduce material use and associated impacts over time. The metals industry can play a key reinforcing role in the transition by adapting to the increasing supply of renewable electricity. Specifically, direct electrolysis can extract metal from ore close to the thermodynamic limit, to make efficient use of low-C electricity. The unique features of emerging technologies for iron extraction, molten oxide electrolysis and molten sulphide electrolysis are considered in this evolving system. Electrification enables elegant separations and provides a pathway to build out infrastructure while reducing environmental impacts, though material efficiency measures will still be crucial to meet 2050 carbon budgets.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信