{"title":"尿酸通过 LDHA/ROS/NLRP3 途径介导肾小管炎症。","authors":"Jun Ouyang, Hui Wang, Yumei Gan, Jiangnan Huang","doi":"10.1080/10641963.2024.2424834","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Hyperuricemia (HUA) is an important factor leading to chronic kidney disease (CKD). The kidney tubular inflammatory response is activated in HUA. This study aimed to investigate whether lactate dehydrogenase A (LDHA) is involved in mediating uric acid-induced kidney tubular inflammatory response.</p><p><strong>Methods: </strong>In vivo, an HUA mouse model was established by continuous intraperitoneal injection of potassium oxonate (PO) for one week. A total of 18 C57BL/6J male adult mice were divided into three groups: control group, HUA group, and HUA+oxamate group, with six mice in each group. Oxamate was intraperitoneally injected into the mice one hour after PO injection. In vitro, an HUA model was simulated by stimulating HK-2 cells with uric acid. Oxamate and tempol inhibited LDHA and reactive oxygen species (ROS) in HK-2 cells.</p><p><strong>Results: </strong>In HUA mice, blood uric acid levels were significantly elevated. LDHA in kidney tubular cells was significantly increased in both in vivo and in vitro HUA models, accompanied by an increase in kidney tubular inflammation and ROS. Mechanistically, LDHA mediates uric acid-induced inflammation to kidney tubular cells through the ROS/NLRP3 pathway. Pharmacologic inhibition of LDHA or ROS in kidney tubular cells can significantly ameliorate inflammation response caused by uric acid.</p><p><strong>Conclusions: </strong>LDHA in kidney tubular cells significantly was increased in HUA models. LDHA mediates kidney inflammation response induced by uric acid through the ROS/NLRP3 pathway. This study may provide a new intervention target for preventing kidney tubular inflammation caused by uric acid.</p>","PeriodicalId":10333,"journal":{"name":"Clinical and Experimental Hypertension","volume":"46 1","pages":"2424834"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uric acid mediates kidney tubular inflammation through the LDHA/ROS/NLRP3 pathway.\",\"authors\":\"Jun Ouyang, Hui Wang, Yumei Gan, Jiangnan Huang\",\"doi\":\"10.1080/10641963.2024.2424834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Hyperuricemia (HUA) is an important factor leading to chronic kidney disease (CKD). The kidney tubular inflammatory response is activated in HUA. This study aimed to investigate whether lactate dehydrogenase A (LDHA) is involved in mediating uric acid-induced kidney tubular inflammatory response.</p><p><strong>Methods: </strong>In vivo, an HUA mouse model was established by continuous intraperitoneal injection of potassium oxonate (PO) for one week. A total of 18 C57BL/6J male adult mice were divided into three groups: control group, HUA group, and HUA+oxamate group, with six mice in each group. Oxamate was intraperitoneally injected into the mice one hour after PO injection. In vitro, an HUA model was simulated by stimulating HK-2 cells with uric acid. Oxamate and tempol inhibited LDHA and reactive oxygen species (ROS) in HK-2 cells.</p><p><strong>Results: </strong>In HUA mice, blood uric acid levels were significantly elevated. LDHA in kidney tubular cells was significantly increased in both in vivo and in vitro HUA models, accompanied by an increase in kidney tubular inflammation and ROS. Mechanistically, LDHA mediates uric acid-induced inflammation to kidney tubular cells through the ROS/NLRP3 pathway. Pharmacologic inhibition of LDHA or ROS in kidney tubular cells can significantly ameliorate inflammation response caused by uric acid.</p><p><strong>Conclusions: </strong>LDHA in kidney tubular cells significantly was increased in HUA models. LDHA mediates kidney inflammation response induced by uric acid through the ROS/NLRP3 pathway. This study may provide a new intervention target for preventing kidney tubular inflammation caused by uric acid.</p>\",\"PeriodicalId\":10333,\"journal\":{\"name\":\"Clinical and Experimental Hypertension\",\"volume\":\"46 1\",\"pages\":\"2424834\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10641963.2024.2424834\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10641963.2024.2424834","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Uric acid mediates kidney tubular inflammation through the LDHA/ROS/NLRP3 pathway.
Purpose: Hyperuricemia (HUA) is an important factor leading to chronic kidney disease (CKD). The kidney tubular inflammatory response is activated in HUA. This study aimed to investigate whether lactate dehydrogenase A (LDHA) is involved in mediating uric acid-induced kidney tubular inflammatory response.
Methods: In vivo, an HUA mouse model was established by continuous intraperitoneal injection of potassium oxonate (PO) for one week. A total of 18 C57BL/6J male adult mice were divided into three groups: control group, HUA group, and HUA+oxamate group, with six mice in each group. Oxamate was intraperitoneally injected into the mice one hour after PO injection. In vitro, an HUA model was simulated by stimulating HK-2 cells with uric acid. Oxamate and tempol inhibited LDHA and reactive oxygen species (ROS) in HK-2 cells.
Results: In HUA mice, blood uric acid levels were significantly elevated. LDHA in kidney tubular cells was significantly increased in both in vivo and in vitro HUA models, accompanied by an increase in kidney tubular inflammation and ROS. Mechanistically, LDHA mediates uric acid-induced inflammation to kidney tubular cells through the ROS/NLRP3 pathway. Pharmacologic inhibition of LDHA or ROS in kidney tubular cells can significantly ameliorate inflammation response caused by uric acid.
Conclusions: LDHA in kidney tubular cells significantly was increased in HUA models. LDHA mediates kidney inflammation response induced by uric acid through the ROS/NLRP3 pathway. This study may provide a new intervention target for preventing kidney tubular inflammation caused by uric acid.
期刊介绍:
Clinical and Experimental Hypertension is a reputable journal that has converted to a full Open Access format starting from Volume 45 in 2023. While previous volumes are still accessible through a Pay to Read model, the journal now provides free and open access to its content. It serves as an international platform for the exchange of up-to-date scientific and clinical information concerning both human and animal hypertension. The journal publishes a wide range of articles, including full research papers, solicited and unsolicited reviews, and commentaries. Through these publications, the journal aims to enhance current understanding and support the timely detection, management, control, and prevention of hypertension-related conditions.
One notable aspect of Clinical and Experimental Hypertension is its coverage of special issues that focus on the proceedings of symposia dedicated to hypertension research. This feature allows researchers and clinicians to delve deeper into the latest advancements in this field.
The journal is abstracted and indexed in several renowned databases, including Pharmacoeconomics and Outcomes News (Online), Reactions Weekly (Online), CABI, EBSCOhost, Elsevier BV, International Atomic Energy Agency, and the National Library of Medicine, among others. These affiliations ensure that the journal's content receives broad visibility and facilitates its discoverability by professionals and researchers in related disciplines.