{"title":"热致性向列液晶中的铁流体液滴链。","authors":"Varun Chandrasekar, Jian Ren Lu, Ingo Dierking","doi":"10.1002/cphc.202400858","DOIUrl":null,"url":null,"abstract":"<p><p>Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400858"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals.\",\"authors\":\"Varun Chandrasekar, Jian Ren Lu, Ingo Dierking\",\"doi\":\"10.1002/cphc.202400858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400858\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400858\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400858","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ferrofluid Droplet Chains in Thermotropic Nematic Liquid Crystals.
Dispersing ferrofluids in liquid crystals (LCs) produces unique systems which possess magnetic functionality and novel phenomena such as droplet chaining. This work reports the formation of ferrofluid droplet chains facilitated by the topological defects within the LC director field, induced by the dispersed ferrofluid. The translational and rotational motion of these chains could be controlled via application of external magnetic fields. The process of the droplet chain formation in LCs can be stabilized by the addition of surfactants. The magnetic colloidal particles in the ferrofluid located at the interface between the ferrofluid and the LC are arranged so that a boundary layer was formed. The velocities and boundary layer thickness values of ferrofluid droplet chains in nematic 5CB (4-Cyano-4'-pentylbiphenyl) were investigated for varying average droplet sizes and number of droplets in a chain. The creation and behaviour of ferrofluid droplet chains in 5CB with the addition of the surfactant polysorbate 60 (Tween-60) and without, was comparatively investigated. The integration of liquid crystals and ferrofluids along with the incorporation of functional materials facilitates the innovative development of advanced materials for future applications.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.