Thomas Konstantinovsky, Ayelet Peres, Pazit Polak, Gur Yaari
{"title":"免疫球蛋白序列比对器的无偏比较。","authors":"Thomas Konstantinovsky, Ayelet Peres, Pazit Polak, Gur Yaari","doi":"10.1093/bib/bbae556","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system's dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immunogenetics computational tools. It sets up the ground for further improving the crucial task of Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unbiased comparison of immunoglobulin sequence aligners.\",\"authors\":\"Thomas Konstantinovsky, Ayelet Peres, Pazit Polak, Gur Yaari\",\"doi\":\"10.1093/bib/bbae556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system's dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immunogenetics computational tools. It sets up the ground for further improving the crucial task of Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae556\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae556","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An unbiased comparison of immunoglobulin sequence aligners.
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system's dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immunogenetics computational tools. It sets up the ground for further improving the crucial task of Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.