有限域上加法码、积分和分数 MDS 码的格里斯梅尔类型界限

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Simeon Ball, Michel Lavrauw, Tabriz Popatia
{"title":"有限域上加法码、积分和分数 MDS 码的格里斯梅尔类型界限","authors":"Simeon Ball, Michel Lavrauw, Tabriz Popatia","doi":"10.1007/s10623-024-01519-2","DOIUrl":null,"url":null,"abstract":"<p>In this article we prove Griesmer type bounds for additive codes over finite fields. These new bounds give upper bounds on the length of maximum distance separable (MDS) codes, codes which attain the Singleton bound. We will also consider codes to be MDS if they attain the fractional Singleton bound, due to Huffman. We prove that this bound in the fractional case can be obtained by codes whose length surpasses the length of the longest known codes in the integral case. For small parameters, we provide exhaustive computational results for additive MDS codes, by classifying the corresponding (fractional) subspace-arcs. This includes a complete classification of fractional additive MDS codes of size 243 over the field of order 9.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"68 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Griesmer type bounds for additive codes over finite fields, integral and fractional MDS codes\",\"authors\":\"Simeon Ball, Michel Lavrauw, Tabriz Popatia\",\"doi\":\"10.1007/s10623-024-01519-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we prove Griesmer type bounds for additive codes over finite fields. These new bounds give upper bounds on the length of maximum distance separable (MDS) codes, codes which attain the Singleton bound. We will also consider codes to be MDS if they attain the fractional Singleton bound, due to Huffman. We prove that this bound in the fractional case can be obtained by codes whose length surpasses the length of the longest known codes in the integral case. For small parameters, we provide exhaustive computational results for additive MDS codes, by classifying the corresponding (fractional) subspace-arcs. This includes a complete classification of fractional additive MDS codes of size 243 over the field of order 9.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01519-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01519-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们证明了有限域上加法码的格里斯梅尔类型界限。这些新边界给出了最大距离可分码(MDS)长度的上限,即达到 Singleton 边界的码。如果代码达到了哈夫曼提出的分数单子约束,我们也会认为它们是 MDS 代码。我们证明,在分数情况下,长度超过积分情况下已知最长编码长度的编码可以获得这一约束。对于小参数,我们通过对相应的(分数)子空间弧进行分类,为加法 MDS 编码提供了详尽的计算结果。这包括对 9 阶域上大小为 243 的分数加法 MDS 码的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Griesmer type bounds for additive codes over finite fields, integral and fractional MDS codes

In this article we prove Griesmer type bounds for additive codes over finite fields. These new bounds give upper bounds on the length of maximum distance separable (MDS) codes, codes which attain the Singleton bound. We will also consider codes to be MDS if they attain the fractional Singleton bound, due to Huffman. We prove that this bound in the fractional case can be obtained by codes whose length surpasses the length of the longest known codes in the integral case. For small parameters, we provide exhaustive computational results for additive MDS codes, by classifying the corresponding (fractional) subspace-arcs. This includes a complete classification of fractional additive MDS codes of size 243 over the field of order 9.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信