{"title":"最大恢复力的标准偏差控制着面心立方多元素合金的内在强度","authors":"Fei Shuang , Luca Laurenti , Poulumi Dey","doi":"10.1016/j.actamat.2024.120508","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic (FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic simulations, informed by both embedded-atom model and neural network potentials, with first-principles calculations, stochastic Peierls-Nabarro (PN) modeling, and symbolic machine learning. We identify a consistent, robust linear correlation between the strength of MPEAs and the standard deviation of the maximum stacking-fault restoring force (<em>τ</em><sub>max,sd</sub>) across various potentials. This finding is substantiated by comparing the experimental strengths of Cantor alloys’ subsystems and Ni<sub>62.5</sub>V<sub>37.5</sub> against <em>τ</em><sub>max,sd</sub> values from high-throughput first-principle calculations. Our theoretical insights are derived from integrating the stochastic Peierls-Nabarro model with a shearable precipitation hardening framework, demonstrating that lattice distortion alone does not directly enhance intrinsic strength. Instead, <em>τ</em><sub>max,sd</sub> emerges as a critical determinant, capable of boosting the strength of MPEAs by up to tenfold. Our analysis reveals the critical role of the exponential form of the PN model in achieving substantial strength improvement by transforming the Gaussian-like distribution of <em>τ</em><sub>max</sub> into an exponential-like distribution of local Peierls stress. Additionally, using an advanced symbolic machine learning technique, the sure independence screening and sparsifying operator (SISSO) method, we derive interpretable relationships between MPEA strength, elastic properties, and <em>τ</em><sub>max</sub> statistics, offering new insights into the design and optimization of advanced MPEAs. These findings highlight that the nonlinear physics and atomic fluctuations characterizing MPEAs not only underpin their unconventional intrinsic strength but also contribute to other complex properties such as sluggish diffusion and cocktail effect.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120508"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standard deviation in maximum restoring force controls the intrinsic strength of face-centered cubic multi-principal element alloys\",\"authors\":\"Fei Shuang , Luca Laurenti , Poulumi Dey\",\"doi\":\"10.1016/j.actamat.2024.120508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic (FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic simulations, informed by both embedded-atom model and neural network potentials, with first-principles calculations, stochastic Peierls-Nabarro (PN) modeling, and symbolic machine learning. We identify a consistent, robust linear correlation between the strength of MPEAs and the standard deviation of the maximum stacking-fault restoring force (<em>τ</em><sub>max,sd</sub>) across various potentials. This finding is substantiated by comparing the experimental strengths of Cantor alloys’ subsystems and Ni<sub>62.5</sub>V<sub>37.5</sub> against <em>τ</em><sub>max,sd</sub> values from high-throughput first-principle calculations. Our theoretical insights are derived from integrating the stochastic Peierls-Nabarro model with a shearable precipitation hardening framework, demonstrating that lattice distortion alone does not directly enhance intrinsic strength. Instead, <em>τ</em><sub>max,sd</sub> emerges as a critical determinant, capable of boosting the strength of MPEAs by up to tenfold. Our analysis reveals the critical role of the exponential form of the PN model in achieving substantial strength improvement by transforming the Gaussian-like distribution of <em>τ</em><sub>max</sub> into an exponential-like distribution of local Peierls stress. Additionally, using an advanced symbolic machine learning technique, the sure independence screening and sparsifying operator (SISSO) method, we derive interpretable relationships between MPEA strength, elastic properties, and <em>τ</em><sub>max</sub> statistics, offering new insights into the design and optimization of advanced MPEAs. These findings highlight that the nonlinear physics and atomic fluctuations characterizing MPEAs not only underpin their unconventional intrinsic strength but also contribute to other complex properties such as sluggish diffusion and cocktail effect.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"282 \",\"pages\":\"Article 120508\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424008577\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008577","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Standard deviation in maximum restoring force controls the intrinsic strength of face-centered cubic multi-principal element alloys
In this study, we explore the mechanisms underlying the exceptional intrinsic strength of face-centered cubic (FCC) Multi-Principal Element Alloys (MPEAs) using a multifaceted approach. Our methods integrate atomistic simulations, informed by both embedded-atom model and neural network potentials, with first-principles calculations, stochastic Peierls-Nabarro (PN) modeling, and symbolic machine learning. We identify a consistent, robust linear correlation between the strength of MPEAs and the standard deviation of the maximum stacking-fault restoring force (τmax,sd) across various potentials. This finding is substantiated by comparing the experimental strengths of Cantor alloys’ subsystems and Ni62.5V37.5 against τmax,sd values from high-throughput first-principle calculations. Our theoretical insights are derived from integrating the stochastic Peierls-Nabarro model with a shearable precipitation hardening framework, demonstrating that lattice distortion alone does not directly enhance intrinsic strength. Instead, τmax,sd emerges as a critical determinant, capable of boosting the strength of MPEAs by up to tenfold. Our analysis reveals the critical role of the exponential form of the PN model in achieving substantial strength improvement by transforming the Gaussian-like distribution of τmax into an exponential-like distribution of local Peierls stress. Additionally, using an advanced symbolic machine learning technique, the sure independence screening and sparsifying operator (SISSO) method, we derive interpretable relationships between MPEA strength, elastic properties, and τmax statistics, offering new insights into the design and optimization of advanced MPEAs. These findings highlight that the nonlinear physics and atomic fluctuations characterizing MPEAs not only underpin their unconventional intrinsic strength but also contribute to other complex properties such as sluggish diffusion and cocktail effect.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.