Paul G. Lucey, Ryan A. Zeigler, Lingzhi Sun, Abigail Flom, Andrea B. Mosie, Juliane Gross, Marley A. Chertok, Chiara Ferrari-Wong, Schelin M. Ireland, the ANGSA Team
{"title":"月核 73001 的红外光谱分析:没有暴露于陆地水蒸气历史的月球样品的水合上限","authors":"Paul G. Lucey, Ryan A. Zeigler, Lingzhi Sun, Abigail Flom, Andrea B. Mosie, Juliane Gross, Marley A. Chertok, Chiara Ferrari-Wong, Schelin M. Ireland, the ANGSA Team","doi":"10.1029/2024JE008389","DOIUrl":null,"url":null,"abstract":"<p>The lunar surface exhibits an absorption band near 3 μm due to hydration, either water or hydroxyl. In most analyses, the band is variable at least in latitude and temperature. Hypotheses for the variability include infilling of the band by thermal emission, migration of molecular water along temperature gradients, and formation and destruction of metastable hydroxyl as solar wind hydrogen diffuses through lunar surface grains. The degree to which lunar soil exhibits an inherent hydration feature in the absence of environmental influences is an open question. The recent opening of Apollo core sample 73001 that was sealed in vacuum on the lunar surface and curated in dry nitrogen since its return from the Moon affords an opportunity to determine if lunar soil exhibits a spectral feature due to hydration isolated from the lunar environment. To that end, near the close of dissection of the core into samples for allocation to the lunar science community, we introduced an infrared spectrometer into the nitrogen purged curation cabinet and collected reflectance spectra of portions of the core between 2 and 4 μm. We found no evidence of absorption due to hydration to 1.1% band depth uncertainty. The measurements were relative to a diffuse aluminum standard, which itself could possibly absorb light at 3 μm due to a thin film of water; we estimate a possible negative bias of about 50 μg/g equivalent water absorption, leading to a final estimate of core water abundance of 50 μg/g ± 50 μg/g. This finding does not contradict prior estimates of lunar surface hydration as core sample 73001 is immature and may not have had sufficient opportunity to gather enough hydrogen from the solar wind or water from micrometeorites to form detectable hydration. After exposure of the core to laboratory atmosphere, a strong 3 μm absorption developed, equivalent to over 1,000 μg/g at a rate of about 5 μg/g per minute, illustrating the sensitivity of lunar materials to water contamination, and the effectiveness of curation of the sample.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008389","citationCount":"0","resultStr":"{\"title\":\"Infrared Spectroscopy of Lunar Core 73001: Upper Limit on Hydration in a Lunar Sample With No History of Exposure to Terrestrial Water Vapor\",\"authors\":\"Paul G. Lucey, Ryan A. Zeigler, Lingzhi Sun, Abigail Flom, Andrea B. Mosie, Juliane Gross, Marley A. Chertok, Chiara Ferrari-Wong, Schelin M. Ireland, the ANGSA Team\",\"doi\":\"10.1029/2024JE008389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lunar surface exhibits an absorption band near 3 μm due to hydration, either water or hydroxyl. In most analyses, the band is variable at least in latitude and temperature. Hypotheses for the variability include infilling of the band by thermal emission, migration of molecular water along temperature gradients, and formation and destruction of metastable hydroxyl as solar wind hydrogen diffuses through lunar surface grains. The degree to which lunar soil exhibits an inherent hydration feature in the absence of environmental influences is an open question. The recent opening of Apollo core sample 73001 that was sealed in vacuum on the lunar surface and curated in dry nitrogen since its return from the Moon affords an opportunity to determine if lunar soil exhibits a spectral feature due to hydration isolated from the lunar environment. To that end, near the close of dissection of the core into samples for allocation to the lunar science community, we introduced an infrared spectrometer into the nitrogen purged curation cabinet and collected reflectance spectra of portions of the core between 2 and 4 μm. We found no evidence of absorption due to hydration to 1.1% band depth uncertainty. The measurements were relative to a diffuse aluminum standard, which itself could possibly absorb light at 3 μm due to a thin film of water; we estimate a possible negative bias of about 50 μg/g equivalent water absorption, leading to a final estimate of core water abundance of 50 μg/g ± 50 μg/g. This finding does not contradict prior estimates of lunar surface hydration as core sample 73001 is immature and may not have had sufficient opportunity to gather enough hydrogen from the solar wind or water from micrometeorites to form detectable hydration. After exposure of the core to laboratory atmosphere, a strong 3 μm absorption developed, equivalent to over 1,000 μg/g at a rate of about 5 μg/g per minute, illustrating the sensitivity of lunar materials to water contamination, and the effectiveness of curation of the sample.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 11\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008389\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008389\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008389","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Infrared Spectroscopy of Lunar Core 73001: Upper Limit on Hydration in a Lunar Sample With No History of Exposure to Terrestrial Water Vapor
The lunar surface exhibits an absorption band near 3 μm due to hydration, either water or hydroxyl. In most analyses, the band is variable at least in latitude and temperature. Hypotheses for the variability include infilling of the band by thermal emission, migration of molecular water along temperature gradients, and formation and destruction of metastable hydroxyl as solar wind hydrogen diffuses through lunar surface grains. The degree to which lunar soil exhibits an inherent hydration feature in the absence of environmental influences is an open question. The recent opening of Apollo core sample 73001 that was sealed in vacuum on the lunar surface and curated in dry nitrogen since its return from the Moon affords an opportunity to determine if lunar soil exhibits a spectral feature due to hydration isolated from the lunar environment. To that end, near the close of dissection of the core into samples for allocation to the lunar science community, we introduced an infrared spectrometer into the nitrogen purged curation cabinet and collected reflectance spectra of portions of the core between 2 and 4 μm. We found no evidence of absorption due to hydration to 1.1% band depth uncertainty. The measurements were relative to a diffuse aluminum standard, which itself could possibly absorb light at 3 μm due to a thin film of water; we estimate a possible negative bias of about 50 μg/g equivalent water absorption, leading to a final estimate of core water abundance of 50 μg/g ± 50 μg/g. This finding does not contradict prior estimates of lunar surface hydration as core sample 73001 is immature and may not have had sufficient opportunity to gather enough hydrogen from the solar wind or water from micrometeorites to form detectable hydration. After exposure of the core to laboratory atmosphere, a strong 3 μm absorption developed, equivalent to over 1,000 μg/g at a rate of about 5 μg/g per minute, illustrating the sensitivity of lunar materials to water contamination, and the effectiveness of curation of the sample.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.