通过杨氏量纲理论求一类障碍问题的存在性和唯一性结果

IF 1.4 3区 数学 Q1 MATHEMATICS
Mouad Allalou, Mohamed El Ouaarabi, Abderrahmane Raji
{"title":"通过杨氏量纲理论求一类障碍问题的存在性和唯一性结果","authors":"Mouad Allalou,&nbsp;Mohamed El Ouaarabi,&nbsp;Abderrahmane Raji","doi":"10.1007/s13324-024-00972-5","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this article is to prove the existence and uniqueness of weak solutions to the following obstacle problem of <i>p</i>-Laplace-type: </p><div><div><span>$$\\begin{aligned} \\displaystyle \\int _{\\Omega }\\sigma _1(z,Du-\\mathcal {F}(u)):D(v-u)+\\sigma _2(z,Du):(v-u)+ \\left\\langle u\\vert u\\vert ^{p-2}, v- u\\right\\rangle \\mathrm {~d}z\\ge 0, \\end{aligned}$$</span></div></div><p>with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness results for a class of obstacle problem via Young’s measure theory\",\"authors\":\"Mouad Allalou,&nbsp;Mohamed El Ouaarabi,&nbsp;Abderrahmane Raji\",\"doi\":\"10.1007/s13324-024-00972-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this article is to prove the existence and uniqueness of weak solutions to the following obstacle problem of <i>p</i>-Laplace-type: </p><div><div><span>$$\\\\begin{aligned} \\\\displaystyle \\\\int _{\\\\Omega }\\\\sigma _1(z,Du-\\\\mathcal {F}(u)):D(v-u)+\\\\sigma _2(z,Du):(v-u)+ \\\\left\\\\langle u\\\\vert u\\\\vert ^{p-2}, v- u\\\\right\\\\rangle \\\\mathrm {~d}z\\\\ge 0, \\\\end{aligned}$$</span></div></div><p>with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00972-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00972-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明以下p-拉普拉斯型障碍问题弱解的存在性和唯一性: $$\begin{aligned}\displaystyle int _{\Omega }\sigma _1(z,Du-\mathcal {F}(u)):D(v-u)+\sigma _2(z,Du):(v-u)+\left\langle u\vert u\vert ^{p-2}, v- u\right\rangle \mathrm {~d}z\ge 0, \end{aligned}$$with data belonging to the dual of Sobolev spaces.主要结果是通过金德勒和斯坦帕奇亚定理以及杨的度量理论证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness results for a class of obstacle problem via Young’s measure theory

The purpose of this article is to prove the existence and uniqueness of weak solutions to the following obstacle problem of p-Laplace-type:

$$\begin{aligned} \displaystyle \int _{\Omega }\sigma _1(z,Du-\mathcal {F}(u)):D(v-u)+\sigma _2(z,Du):(v-u)+ \left\langle u\vert u\vert ^{p-2}, v- u\right\rangle \mathrm {~d}z\ge 0, \end{aligned}$$

with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信