Mouad Allalou, Mohamed El Ouaarabi, Abderrahmane Raji
{"title":"通过杨氏量纲理论求一类障碍问题的存在性和唯一性结果","authors":"Mouad Allalou, Mohamed El Ouaarabi, Abderrahmane Raji","doi":"10.1007/s13324-024-00972-5","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this article is to prove the existence and uniqueness of weak solutions to the following obstacle problem of <i>p</i>-Laplace-type: </p><div><div><span>$$\\begin{aligned} \\displaystyle \\int _{\\Omega }\\sigma _1(z,Du-\\mathcal {F}(u)):D(v-u)+\\sigma _2(z,Du):(v-u)+ \\left\\langle u\\vert u\\vert ^{p-2}, v- u\\right\\rangle \\mathrm {~d}z\\ge 0, \\end{aligned}$$</span></div></div><p>with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness results for a class of obstacle problem via Young’s measure theory\",\"authors\":\"Mouad Allalou, Mohamed El Ouaarabi, Abderrahmane Raji\",\"doi\":\"10.1007/s13324-024-00972-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this article is to prove the existence and uniqueness of weak solutions to the following obstacle problem of <i>p</i>-Laplace-type: </p><div><div><span>$$\\\\begin{aligned} \\\\displaystyle \\\\int _{\\\\Omega }\\\\sigma _1(z,Du-\\\\mathcal {F}(u)):D(v-u)+\\\\sigma _2(z,Du):(v-u)+ \\\\left\\\\langle u\\\\vert u\\\\vert ^{p-2}, v- u\\\\right\\\\rangle \\\\mathrm {~d}z\\\\ge 0, \\\\end{aligned}$$</span></div></div><p>with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00972-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00972-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在证明以下p-拉普拉斯型障碍问题弱解的存在性和唯一性: $$\begin{aligned}\displaystyle int _{\Omega }\sigma _1(z,Du-\mathcal {F}(u)):D(v-u)+\sigma _2(z,Du):(v-u)+\left\langle u\vert u\vert ^{p-2}, v- u\right\rangle \mathrm {~d}z\ge 0, \end{aligned}$$with data belonging to the dual of Sobolev spaces.主要结果是通过金德勒和斯坦帕奇亚定理以及杨的度量理论证明的。
with data belonging to the dual of Sobolev spaces. The main result is demonstrated by means of Kinderlehrer and Stampacchia’s Theorem and Young’s measure theory.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.