f-d 相互作用对岛式 Fe/Gd2O3 纳米结构中隧道磁阻和磁阻的影响

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
A. M. Kasumov, A. I. Dmitriev, V. V. Netyaga, K. A. Korotkov, V. M. Karavayeva, A. I. Ievtushenko
{"title":"f-d 相互作用对岛式 Fe/Gd2O3 纳米结构中隧道磁阻和磁阻的影响","authors":"A. M. Kasumov,&nbsp;A. I. Dmitriev,&nbsp;V. V. Netyaga,&nbsp;K. A. Korotkov,&nbsp;V. M. Karavayeva,&nbsp;A. I. Ievtushenko","doi":"10.1007/s11106-024-00436-2","DOIUrl":null,"url":null,"abstract":"<p>The potential for amplifying tunnel magnetoresistance and magnetoimpedance in island nanofilms without energy consumption or the use of amplifying devices was studied. Such amplification was observed for the films deposited on a Gd<sub>2</sub>O<sub>3</sub> layer instead of a glass substrate. The enhancement is due to the <i>f–d</i> exchange interaction established between atoms with unfilled <i>f</i>- and <i>d</i>-electron shells, present in both Fe and Gd<sub>2</sub>O<sub>3</sub>. The <i>f–d</i> exchange interaction enhances the ordering of the magnetic structure within the Fe ferromagnetic layer, increases its magnetization, and subsequently improves the properties that depend on this magnetization. Iron and Gd<sub>2</sub>O<sub>3</sub> were selected because the magnetic moments of Fe in the iron group and Gd in the lanthanide series are among the highest effective ones: μ<sub>Fe</sub> = 7.13 μ<sub>B</sub> and μ<sub>Gd</sub> = 7.95 μ<sub>B</sub>. This, according to theory, determines the high energy of the <i>f–d</i> exchange interaction. The island morphology of Fe films deposited on a Gd<sub>2</sub>O<sub>3</sub> layer enabled electron tunneling under the influence of the <i>f–d</i> exchange interaction. This allowed the study of tunnel magnetoresistance under direct current and magnetoimpedance under alternating current influenced by the <i>f–d</i> exchange interaction. The frequency dependence of the active component <i>Z'</i>, the reactive component <i>Z''</i>, and the total impedance <i>Z</i> of Fe films on glass and Gd<sub>2</sub>O<sub>3</sub> substrates, without and under a constant magnetic field of 7500 Oe, was analyzed. These characteristics are used to determine the frequency dependence of tunnel magnetoimpedance and estimate tunnel magnetoresistance for Fe island films on glass and Gd<sub>2</sub>O<sub>3</sub> substrates. These characteristics were found to be 55 % higher, on average, for Fe deposited on Gd<sub>2</sub>O<sub>3</sub> than for Fe on glass, both at a low frequency of 0.1 Hz for tunnel magnetoresistance and at higher frequencies of 1–10<sup>5</sup> Hz for tunnel magnetoimpedance. This results from the influence of <i>f–d</i> exchange interaction on electron tunneling between the iron islands.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 1-2","pages":"30 - 36"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures\",\"authors\":\"A. M. Kasumov,&nbsp;A. I. Dmitriev,&nbsp;V. V. Netyaga,&nbsp;K. A. Korotkov,&nbsp;V. M. Karavayeva,&nbsp;A. I. Ievtushenko\",\"doi\":\"10.1007/s11106-024-00436-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The potential for amplifying tunnel magnetoresistance and magnetoimpedance in island nanofilms without energy consumption or the use of amplifying devices was studied. Such amplification was observed for the films deposited on a Gd<sub>2</sub>O<sub>3</sub> layer instead of a glass substrate. The enhancement is due to the <i>f–d</i> exchange interaction established between atoms with unfilled <i>f</i>- and <i>d</i>-electron shells, present in both Fe and Gd<sub>2</sub>O<sub>3</sub>. The <i>f–d</i> exchange interaction enhances the ordering of the magnetic structure within the Fe ferromagnetic layer, increases its magnetization, and subsequently improves the properties that depend on this magnetization. Iron and Gd<sub>2</sub>O<sub>3</sub> were selected because the magnetic moments of Fe in the iron group and Gd in the lanthanide series are among the highest effective ones: μ<sub>Fe</sub> = 7.13 μ<sub>B</sub> and μ<sub>Gd</sub> = 7.95 μ<sub>B</sub>. This, according to theory, determines the high energy of the <i>f–d</i> exchange interaction. The island morphology of Fe films deposited on a Gd<sub>2</sub>O<sub>3</sub> layer enabled electron tunneling under the influence of the <i>f–d</i> exchange interaction. This allowed the study of tunnel magnetoresistance under direct current and magnetoimpedance under alternating current influenced by the <i>f–d</i> exchange interaction. The frequency dependence of the active component <i>Z'</i>, the reactive component <i>Z''</i>, and the total impedance <i>Z</i> of Fe films on glass and Gd<sub>2</sub>O<sub>3</sub> substrates, without and under a constant magnetic field of 7500 Oe, was analyzed. These characteristics are used to determine the frequency dependence of tunnel magnetoimpedance and estimate tunnel magnetoresistance for Fe island films on glass and Gd<sub>2</sub>O<sub>3</sub> substrates. These characteristics were found to be 55 % higher, on average, for Fe deposited on Gd<sub>2</sub>O<sub>3</sub> than for Fe on glass, both at a low frequency of 0.1 Hz for tunnel magnetoresistance and at higher frequencies of 1–10<sup>5</sup> Hz for tunnel magnetoimpedance. This results from the influence of <i>f–d</i> exchange interaction on electron tunneling between the iron islands.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"63 1-2\",\"pages\":\"30 - 36\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-024-00436-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00436-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在不消耗能量或使用放大装置的情况下放大岛状纳米薄膜中隧道磁阻和磁阻的潜力。在沉积在 Gd2O3 层而不是玻璃基底上的薄膜上观察到了这种放大作用。这种放大作用是由于铁和 Gd2O3 中都存在的未填充 f 和 d 电子壳的原子之间建立的 f-d 交换相互作用。f-d 交换相互作用增强了铁磁层内磁性结构的有序性,提高了其磁化率,从而改善了取决于磁化率的特性。之所以选择铁和 Gd2O3,是因为铁族中的 Fe 和镧系元素中的 Gd 的磁矩是有效磁矩最高的:μFe = 7.13 μB,μGd = 7.95 μB。根据理论,这决定了 f-d 交换相互作用的高能量。沉积在 Gd2O3 层上的铁薄膜的岛状形态使电子能够在 f-d 交换作用的影响下进行隧道传输。因此,可以研究直流电下的隧道磁阻和交流电下受 f-d 交换作用影响的磁阻。分析了玻璃和 Gd2O3 基底上的铁薄膜在无磁场和 7500 Oe 恒定磁场条件下的有源分量 Z'、无源分量 Z'' 和总阻抗 Z 的频率依赖性。这些特性用于确定隧道磁阻的频率依赖性,并估算玻璃和 Gd2O3 基底上铁岛薄膜的隧道磁阻。研究发现,无论是在隧道磁阻的 0.1 Hz 低频还是在隧道磁阻的 1-105 Hz 高频下,沉积在 Gd2O3 上的铁平均比玻璃上的铁高 55%。这是因为 f-d 交换相互作用对铁岛之间电子隧道的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures

Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures

The potential for amplifying tunnel magnetoresistance and magnetoimpedance in island nanofilms without energy consumption or the use of amplifying devices was studied. Such amplification was observed for the films deposited on a Gd2O3 layer instead of a glass substrate. The enhancement is due to the f–d exchange interaction established between atoms with unfilled f- and d-electron shells, present in both Fe and Gd2O3. The f–d exchange interaction enhances the ordering of the magnetic structure within the Fe ferromagnetic layer, increases its magnetization, and subsequently improves the properties that depend on this magnetization. Iron and Gd2O3 were selected because the magnetic moments of Fe in the iron group and Gd in the lanthanide series are among the highest effective ones: μFe = 7.13 μB and μGd = 7.95 μB. This, according to theory, determines the high energy of the f–d exchange interaction. The island morphology of Fe films deposited on a Gd2O3 layer enabled electron tunneling under the influence of the f–d exchange interaction. This allowed the study of tunnel magnetoresistance under direct current and magnetoimpedance under alternating current influenced by the f–d exchange interaction. The frequency dependence of the active component Z', the reactive component Z'', and the total impedance Z of Fe films on glass and Gd2O3 substrates, without and under a constant magnetic field of 7500 Oe, was analyzed. These characteristics are used to determine the frequency dependence of tunnel magnetoimpedance and estimate tunnel magnetoresistance for Fe island films on glass and Gd2O3 substrates. These characteristics were found to be 55 % higher, on average, for Fe deposited on Gd2O3 than for Fe on glass, both at a low frequency of 0.1 Hz for tunnel magnetoresistance and at higher frequencies of 1–105 Hz for tunnel magnetoimpedance. This results from the influence of f–d exchange interaction on electron tunneling between the iron islands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信