自旋(^c\)流形上的广义正标量曲率

IF 0.6 3区 数学 Q3 MATHEMATICS
Boris Botvinnik, Jonathan Rosenberg
{"title":"自旋(^c\\)流形上的广义正标量曲率","authors":"Boris Botvinnik,&nbsp;Jonathan Rosenberg","doi":"10.1007/s10455-024-09977-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let (<i>M</i>, <i>L</i>) be a (compact) non-spin spin<span>\\(^c\\)</span> manifold. Fix a Riemannian metric <i>g</i> on <i>M</i> and a connection <i>A</i> on <i>L</i>, and let <span>\\(D_L\\)</span> be the associated spin<span>\\(^c\\)</span> Dirac operator. Let <span>\\(R^{\\text {tw }}_{(g,A)}:=R_g + 2ic(\\Omega )\\)</span> be the <i>twisted scalar curvature</i> (which takes values in the endomorphisms of the spinor bundle), where <span>\\(R_g\\)</span> is the scalar curvature of <i>g</i> and <span>\\(2ic(\\Omega )\\)</span> comes from the curvature 2-form <span>\\(\\Omega \\)</span> of the connection <i>A</i>. Then the Lichnerowicz-Schrödinger formula for the square of the Dirac operator takes the form <span>\\(D_L^2 =\\nabla ^*\\nabla + \\frac{1}{4}R^{\\text {tw }}_{(g,A)}\\)</span>. In a previous work we proved that a closed non-spin simply-connected spin<span>\\(^c\\)</span>-manifold (<i>M</i>, <i>L</i>) of dimension <span>\\(n\\ge 5\\)</span> admits a pair (<i>g</i>, <i>A</i>) such that <span>\\(R^{\\text {tw }}_{(g,A)}&gt;0\\)</span> if and only if the index <span>\\(\\alpha ^c(M,L):={\\text {ind}}D_L\\)</span> vanishes in <span>\\(K_n\\)</span>. In this paper we introduce a scalar-valued <i>generalized scalar curvature</i> <span>\\(R^{\\text {gen }}_{(g,A)}:=R_g - 2|\\Omega |_{op}\\)</span>, where <span>\\(|\\Omega |_{op}\\)</span> is the pointwise operator norm of Clifford multiplication <span>\\(c(\\Omega )\\)</span>, acting on spinors. We show that the positivity condition on the operator <span>\\(R^{\\text {tw }}_{(g,A)}\\)</span> is equivalent to the positivity of the scalar function <span>\\(R^{\\text {gen }}_{(g,A)}\\)</span>. We prove a corresponding trichotomy theorem concerning the curvature <span>\\(R^{\\text {gen }}_{(g,A)}\\)</span>, and study its implications. We also show that the space <span>\\(\\mathcal {R}^{{\\textrm{gen}+}}(M,L)\\)</span> of pairs (<i>g</i>, <i>A</i>) with <span>\\(R^{\\text {gen }}_{(g,A)}&gt;0\\)</span> has non-trivial topology, and address a conjecture about non-triviality of the “index difference” map.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized positive scalar curvature on spin\\\\(^c\\\\) manifolds\",\"authors\":\"Boris Botvinnik,&nbsp;Jonathan Rosenberg\",\"doi\":\"10.1007/s10455-024-09977-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let (<i>M</i>, <i>L</i>) be a (compact) non-spin spin<span>\\\\(^c\\\\)</span> manifold. Fix a Riemannian metric <i>g</i> on <i>M</i> and a connection <i>A</i> on <i>L</i>, and let <span>\\\\(D_L\\\\)</span> be the associated spin<span>\\\\(^c\\\\)</span> Dirac operator. Let <span>\\\\(R^{\\\\text {tw }}_{(g,A)}:=R_g + 2ic(\\\\Omega )\\\\)</span> be the <i>twisted scalar curvature</i> (which takes values in the endomorphisms of the spinor bundle), where <span>\\\\(R_g\\\\)</span> is the scalar curvature of <i>g</i> and <span>\\\\(2ic(\\\\Omega )\\\\)</span> comes from the curvature 2-form <span>\\\\(\\\\Omega \\\\)</span> of the connection <i>A</i>. Then the Lichnerowicz-Schrödinger formula for the square of the Dirac operator takes the form <span>\\\\(D_L^2 =\\\\nabla ^*\\\\nabla + \\\\frac{1}{4}R^{\\\\text {tw }}_{(g,A)}\\\\)</span>. In a previous work we proved that a closed non-spin simply-connected spin<span>\\\\(^c\\\\)</span>-manifold (<i>M</i>, <i>L</i>) of dimension <span>\\\\(n\\\\ge 5\\\\)</span> admits a pair (<i>g</i>, <i>A</i>) such that <span>\\\\(R^{\\\\text {tw }}_{(g,A)}&gt;0\\\\)</span> if and only if the index <span>\\\\(\\\\alpha ^c(M,L):={\\\\text {ind}}D_L\\\\)</span> vanishes in <span>\\\\(K_n\\\\)</span>. In this paper we introduce a scalar-valued <i>generalized scalar curvature</i> <span>\\\\(R^{\\\\text {gen }}_{(g,A)}:=R_g - 2|\\\\Omega |_{op}\\\\)</span>, where <span>\\\\(|\\\\Omega |_{op}\\\\)</span> is the pointwise operator norm of Clifford multiplication <span>\\\\(c(\\\\Omega )\\\\)</span>, acting on spinors. We show that the positivity condition on the operator <span>\\\\(R^{\\\\text {tw }}_{(g,A)}\\\\)</span> is equivalent to the positivity of the scalar function <span>\\\\(R^{\\\\text {gen }}_{(g,A)}\\\\)</span>. We prove a corresponding trichotomy theorem concerning the curvature <span>\\\\(R^{\\\\text {gen }}_{(g,A)}\\\\)</span>, and study its implications. We also show that the space <span>\\\\(\\\\mathcal {R}^{{\\\\textrm{gen}+}}(M,L)\\\\)</span> of pairs (<i>g</i>, <i>A</i>) with <span>\\\\(R^{\\\\text {gen }}_{(g,A)}&gt;0\\\\)</span> has non-trivial topology, and address a conjecture about non-triviality of the “index difference” map.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-024-09977-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09977-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(M,L)是一个(紧凑的)非自旋流形。在 M 上固定一个黎曼度量 g,在 L 上固定一个连接 A,让 \(D_L\) 是相关的自旋(^c\)狄拉克算子。让(R^{text {tw }}_{(g,A)}:=R_g + 2ic(\Omega )\) 是扭曲的标量曲率(它在旋量束的内变形中取值),其中\(R_g\) 是 g 的标量曲率,\(2ic(\Omega )\)来自连接 A 的曲率 2-form \(\Omega\)。那么狄拉克算子平方的李希诺维奇-薛定谔公式的形式就是 \(D_L^2 =\nabla ^*\nabla + \frac{1}{4}R^{\text {tw }}_{(g,A)}\).在之前的工作中,我们证明了维数为 \(n\ge 5\) 的封闭非自旋简单连接自旋(^c\)-manifold (M, L) 存在一对 (g, A) ,使得 \(R^{\text {tw }}_{(g,A)}>0\) 当且仅当索引 \(\alpha ^c(M,L):={/text {ind}}D_L\) 在 \(K_n\) 中消失。在本文中,我们引入了标量值广义标量曲率 \(R^{text {gen }}_{(g,A)}:=R_g - 2|\Omega |_{op}/),其中 \(|\Omega |_{op}/)是克利福德乘法的点式算子规范 \(c(\Omega )\),作用于旋量。我们证明了算子 \(R^{\text {tw }}_{(g,A)}\) 的实在性条件等价于标量函数 \(R^{text {gen }}_{(g,A)}\) 的实在性。我们证明了关于曲率 \(R^{\text {gen }}_{(g,A)}\) 的相应三分定理,并研究了它的含义。我们还证明了具有\(R^{text {gen }}_{(g,A)}>0\) 的成对 (g, A) 的空间 \(mathcal {R}^{\textrm{gen}+}}(M,L)\) 具有非三维拓扑,并解决了关于 "索引差 "映射非三维性的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized positive scalar curvature on spin\(^c\) manifolds

Let (ML) be a (compact) non-spin spin\(^c\) manifold. Fix a Riemannian metric g on M and a connection A on L, and let \(D_L\) be the associated spin\(^c\) Dirac operator. Let \(R^{\text {tw }}_{(g,A)}:=R_g + 2ic(\Omega )\) be the twisted scalar curvature (which takes values in the endomorphisms of the spinor bundle), where \(R_g\) is the scalar curvature of g and \(2ic(\Omega )\) comes from the curvature 2-form \(\Omega \) of the connection A. Then the Lichnerowicz-Schrödinger formula for the square of the Dirac operator takes the form \(D_L^2 =\nabla ^*\nabla + \frac{1}{4}R^{\text {tw }}_{(g,A)}\). In a previous work we proved that a closed non-spin simply-connected spin\(^c\)-manifold (ML) of dimension \(n\ge 5\) admits a pair (gA) such that \(R^{\text {tw }}_{(g,A)}>0\) if and only if the index \(\alpha ^c(M,L):={\text {ind}}D_L\) vanishes in \(K_n\). In this paper we introduce a scalar-valued generalized scalar curvature \(R^{\text {gen }}_{(g,A)}:=R_g - 2|\Omega |_{op}\), where \(|\Omega |_{op}\) is the pointwise operator norm of Clifford multiplication \(c(\Omega )\), acting on spinors. We show that the positivity condition on the operator \(R^{\text {tw }}_{(g,A)}\) is equivalent to the positivity of the scalar function \(R^{\text {gen }}_{(g,A)}\). We prove a corresponding trichotomy theorem concerning the curvature \(R^{\text {gen }}_{(g,A)}\), and study its implications. We also show that the space \(\mathcal {R}^{{\textrm{gen}+}}(M,L)\) of pairs (gA) with \(R^{\text {gen }}_{(g,A)}>0\) has non-trivial topology, and address a conjecture about non-triviality of the “index difference” map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信