{"title":"研究具有参考温度相关材料特性的三维均质半空间中的热弹性行为","authors":"Nantu Sarkar","doi":"10.1134/S0025654424603872","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the thermoelastic behavior of a three-dimensional homogeneous half-space with temperature-dependent material properties. The study aims to address the limitations of previous analysis that primarily focused on materials with temperature-independent properties, which may not accurately represent real-world scenarios, particularly in high-temperature environments. By incorporating the Lord–Shulman model and employing analytical techniques such as normal mode analysis and eigenvalue approach, analytical solutions are derived for temperature, stress, strain, displacement, and thermal stresses. The effects of temperature-dependent modulus of elasticity and Poisson’s ratio on these physical quantities are explored. Numerical examples illustrate the variations of physical quantities under different material properties, highlighting the significant influences of temperature dependency and Poisson’s ratio on stress, strain, displacement, and thermal stresses. Additionally, three-dimensional distributions of physical quantities with respect to distance and time provide comprehensive insights into their spatiotemporal behavior. This research contributes to a deeper understanding of thermoelastic phenomena in materials with temperature-dependent properties.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Thermoelastic behavior in a Three-Dimensional Homogeneous Half-Space with Reference Temperature-Dependent Material Properties\",\"authors\":\"Nantu Sarkar\",\"doi\":\"10.1134/S0025654424603872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research investigates the thermoelastic behavior of a three-dimensional homogeneous half-space with temperature-dependent material properties. The study aims to address the limitations of previous analysis that primarily focused on materials with temperature-independent properties, which may not accurately represent real-world scenarios, particularly in high-temperature environments. By incorporating the Lord–Shulman model and employing analytical techniques such as normal mode analysis and eigenvalue approach, analytical solutions are derived for temperature, stress, strain, displacement, and thermal stresses. The effects of temperature-dependent modulus of elasticity and Poisson’s ratio on these physical quantities are explored. Numerical examples illustrate the variations of physical quantities under different material properties, highlighting the significant influences of temperature dependency and Poisson’s ratio on stress, strain, displacement, and thermal stresses. Additionally, three-dimensional distributions of physical quantities with respect to distance and time provide comprehensive insights into their spatiotemporal behavior. This research contributes to a deeper understanding of thermoelastic phenomena in materials with temperature-dependent properties.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0025654424603872\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603872","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Investigation of Thermoelastic behavior in a Three-Dimensional Homogeneous Half-Space with Reference Temperature-Dependent Material Properties
This research investigates the thermoelastic behavior of a three-dimensional homogeneous half-space with temperature-dependent material properties. The study aims to address the limitations of previous analysis that primarily focused on materials with temperature-independent properties, which may not accurately represent real-world scenarios, particularly in high-temperature environments. By incorporating the Lord–Shulman model and employing analytical techniques such as normal mode analysis and eigenvalue approach, analytical solutions are derived for temperature, stress, strain, displacement, and thermal stresses. The effects of temperature-dependent modulus of elasticity and Poisson’s ratio on these physical quantities are explored. Numerical examples illustrate the variations of physical quantities under different material properties, highlighting the significant influences of temperature dependency and Poisson’s ratio on stress, strain, displacement, and thermal stresses. Additionally, three-dimensional distributions of physical quantities with respect to distance and time provide comprehensive insights into their spatiotemporal behavior. This research contributes to a deeper understanding of thermoelastic phenomena in materials with temperature-dependent properties.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.