{"title":"了解神经变性机制的类器官模型方法:全面回顾。","authors":"Hanieh Jalali , Sana Rahimian , Nasim Shahsavarian , Rozhan Norouzi , Zahra Ahmadiyeh , Hossein Najafi , Hasti Golchin","doi":"10.1016/j.lfs.2024.123198","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional <em>in vitro</em> and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"358 ","pages":"Article 123198"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The organoid modeling approach to understanding the mechanisms underlying neurodegeneration: A comprehensive review\",\"authors\":\"Hanieh Jalali , Sana Rahimian , Nasim Shahsavarian , Rozhan Norouzi , Zahra Ahmadiyeh , Hossein Najafi , Hasti Golchin\",\"doi\":\"10.1016/j.lfs.2024.123198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional <em>in vitro</em> and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"358 \",\"pages\":\"Article 123198\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524007884\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524007884","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The organoid modeling approach to understanding the mechanisms underlying neurodegeneration: A comprehensive review
Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional in vitro and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.