Yu Cui , Xiao-yin Zhou , Xiao-xu Li , Yi-dong Yang , Cheng-zhong Yang , De-wei Chen , Jian Huang , Yu-qi Gao
{"title":"DDIT4 可促进红细胞分化,并与 SIPA1 相互配合,调节高海拔红细胞增多症骨髓中红细胞的增殖。","authors":"Yu Cui , Xiao-yin Zhou , Xiao-xu Li , Yi-dong Yang , Cheng-zhong Yang , De-wei Chen , Jian Huang , Yu-qi Gao","doi":"10.1016/j.lfs.2024.123212","DOIUrl":null,"url":null,"abstract":"<div><div>Erythrocytosis moderately enhances the oxygen-carrying capacity of the blood and is considered a characteristic response of individuals adapting from low-altitude regions to high-altitude regions. Nevertheless, erythrocytosis can also turn excessive and result in maladaptive syndromes, such as high altitude polycythemia (HAPC). The increased differentiation or proliferation of erythroid cells in the bone marrow may be a crucial factor leading to accumulation of peripheral erythroid cells. However, the mechanism of erythroid regulation within the bone marrow of high-altitude erythrocytosis remains insufficiently systematically observed. We utilized single-cell transcription sequencing to characterize bone marrow cells following chronic hypoxic exposure and found that bone marrow erythrocytosis is associated with the accumulation of Baso-E, Poly-E, and Ortho-E cells at the terminal stage of erythroid lineage differentiation. Through analysis of differential gene expression and localization in differentiated cells within the erythroid lineage, we confirmed that DDIT4 expression was localized in advanced differentiated erythroblast including Baso-E, Poly-E and Ortho-E, its expression was significantly enhanced by hypoxia exposure. We demonstrated that overexpression of DDIT4 could promote K562 cell differentiation, and through the IP pull-down interaction protein profile, we found that DDIT4 might participate in regulating the cell cycle by interacting with SIPA1 to promote the proliferation of erythroid cells and may be involved in HAPC.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"359 ","pages":"Article 123212"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDIT4 promotes erythroid differentiation and coordinates with SIPA1 to regulate erythroid proliferation in bone marrow of high altitude erythrocytosis\",\"authors\":\"Yu Cui , Xiao-yin Zhou , Xiao-xu Li , Yi-dong Yang , Cheng-zhong Yang , De-wei Chen , Jian Huang , Yu-qi Gao\",\"doi\":\"10.1016/j.lfs.2024.123212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Erythrocytosis moderately enhances the oxygen-carrying capacity of the blood and is considered a characteristic response of individuals adapting from low-altitude regions to high-altitude regions. Nevertheless, erythrocytosis can also turn excessive and result in maladaptive syndromes, such as high altitude polycythemia (HAPC). The increased differentiation or proliferation of erythroid cells in the bone marrow may be a crucial factor leading to accumulation of peripheral erythroid cells. However, the mechanism of erythroid regulation within the bone marrow of high-altitude erythrocytosis remains insufficiently systematically observed. We utilized single-cell transcription sequencing to characterize bone marrow cells following chronic hypoxic exposure and found that bone marrow erythrocytosis is associated with the accumulation of Baso-E, Poly-E, and Ortho-E cells at the terminal stage of erythroid lineage differentiation. Through analysis of differential gene expression and localization in differentiated cells within the erythroid lineage, we confirmed that DDIT4 expression was localized in advanced differentiated erythroblast including Baso-E, Poly-E and Ortho-E, its expression was significantly enhanced by hypoxia exposure. We demonstrated that overexpression of DDIT4 could promote K562 cell differentiation, and through the IP pull-down interaction protein profile, we found that DDIT4 might participate in regulating the cell cycle by interacting with SIPA1 to promote the proliferation of erythroid cells and may be involved in HAPC.</div></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":\"359 \",\"pages\":\"Article 123212\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024320524008026\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524008026","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
DDIT4 promotes erythroid differentiation and coordinates with SIPA1 to regulate erythroid proliferation in bone marrow of high altitude erythrocytosis
Erythrocytosis moderately enhances the oxygen-carrying capacity of the blood and is considered a characteristic response of individuals adapting from low-altitude regions to high-altitude regions. Nevertheless, erythrocytosis can also turn excessive and result in maladaptive syndromes, such as high altitude polycythemia (HAPC). The increased differentiation or proliferation of erythroid cells in the bone marrow may be a crucial factor leading to accumulation of peripheral erythroid cells. However, the mechanism of erythroid regulation within the bone marrow of high-altitude erythrocytosis remains insufficiently systematically observed. We utilized single-cell transcription sequencing to characterize bone marrow cells following chronic hypoxic exposure and found that bone marrow erythrocytosis is associated with the accumulation of Baso-E, Poly-E, and Ortho-E cells at the terminal stage of erythroid lineage differentiation. Through analysis of differential gene expression and localization in differentiated cells within the erythroid lineage, we confirmed that DDIT4 expression was localized in advanced differentiated erythroblast including Baso-E, Poly-E and Ortho-E, its expression was significantly enhanced by hypoxia exposure. We demonstrated that overexpression of DDIT4 could promote K562 cell differentiation, and through the IP pull-down interaction protein profile, we found that DDIT4 might participate in regulating the cell cycle by interacting with SIPA1 to promote the proliferation of erythroid cells and may be involved in HAPC.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.