通过抑制 STAT3-cGAS-STING 通路,白细胞介素-6 缺乏症可减轻阿尔茨海默病小鼠的神经炎症。

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin
{"title":"通过抑制 STAT3-cGAS-STING 通路,白细胞介素-6 缺乏症可减轻阿尔茨海默病小鼠的神经炎症。","authors":"Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin","doi":"10.1186/s12974-024-03277-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.</p><p><strong>Methods: </strong>The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6<sup>+/-</sup> mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6<sup>-/-</sup>: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.</p><p><strong>Results: </strong>We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.</p><p><strong>Conclusion: </strong>These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"282"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice.\",\"authors\":\"Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin\",\"doi\":\"10.1186/s12974-024-03277-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.</p><p><strong>Methods: </strong>The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6<sup>+/-</sup> mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6<sup>-/-</sup>: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.</p><p><strong>Results: </strong>We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.</p><p><strong>Conclusion: </strong>These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"21 1\",\"pages\":\"282\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03277-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03277-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:白细胞介素-6(IL-6)-信号转导子和转录激活子 3(STAT3)通路以及环 GMP-AMP 合成酶(cGAS)-干扰素基因刺激器(STING)通路是阿尔茨海默病(AD)神经炎症的关键因素。尽管之前在阿尔茨海默病以外的研究表明,IL-6-STAT3通路可能会调控cGAS-STING通路,但IL-6-STAT3在阿尔茨海默病中影响cGAS-STING的确切分子机制仍不十分清楚:方法:利用WB和qRT-PCR分析了5×FAD和WT小鼠海马中IL-6-STAT3和cGAS-STING通路的激活情况。为了探讨IL-6缺乏的影响,Il6+/-小鼠与5×FAD小鼠杂交,并通过WB、qRT-PCR、免疫组化、ThS染色、ELISA和行为测试评估了其对海马STAT3通路活性、cGAS-STING通路激活、淀粉样病理学、神经炎症和认知功能的影响。通过对 5×FAD 和 Il6-/- 的海马组织进行 ChIP-seq 和 ChIP-qPCR 分析,进一步验证了 STAT3 在 Cgas 和 Sting 基因转录中的调控作用:5×FAD 小鼠的海马组织上进行了 ChIP-seq 和 ChIPqPCR 验证。此外,在 BV2 小神经胶质细胞系中,通过 WB 和 qRT-PCR 检测了 STAT3 激活对 Cgas 和 Sting 基因转录调控以及炎症介质产生的影响:结果:我们在AD小鼠的海马中观察到了IL-6-STAT3和cGAS-STING通路的明显激活,在缺乏IL-6的情况下,这种激活有所减弱。缺乏IL-6可减少AD小鼠海马中β-淀粉样蛋白的沉积和神经炎症,从而改善认知能力。进一步的分析表明,STAT3直接调控Cgas和Sting基因的转录。这些研究结果表明,STAT3-cGAS-STING通路是一种潜在的机制,缺乏IL-6可通过调节该通路减轻AD小鼠的神经炎症:这些研究结果表明,STAT3-cGAS-STING通路在介导与AD相关的神经炎症中至关重要,可能是调节AD炎症过程的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice.

Background: The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.

Methods: The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6+/- mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6-/-: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.

Results: We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.

Conclusion: These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信