影响纳尔逊袋鼠(Chaetodipus nelsoni)微地理遗传结构的沙漠景观特征。

IF 3.1 2区 生物学 Q2 ECOLOGY
Gissella Pineda-Sánchez, Ella Vázquez-Domínguez
{"title":"影响纳尔逊袋鼠(Chaetodipus nelsoni)微地理遗传结构的沙漠景观特征。","authors":"Gissella Pineda-Sánchez, Ella Vázquez-Domínguez","doi":"10.1038/s41437-024-00732-y","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the factors that drive the genetic patterns of natural populations is key in evolutionary biology, ecology and conservation. Hence, it is crucial to understand the role that environmental features play in species genetic diversity and structure. Landscape genetics measures functional connectivity and evaluates the effects of landscape composition, configuration, and heterogeneity on microevolutionary processes. Deserts constitute one of the world's most widespread biomes and exhibit a striking heterogeneity of microhabitats, yet few landscape genetics studies have been performed with rodents in deserts. We evaluated the relationship between landscape and functional connectivity, at a microgeographic scale, of the Nelson's pocket mouse Chaetodipus nelsoni in the Mapimí Biosphere Reserve (Chihuahuan desert). We used single-nucleotide polymorphisms and characterized the landscape based on on-site environmental data and from Landsat satellite images. We identified two distinct genetic clusters shaped by elevation, vegetation and soil. High elevation group showed higher connectivity in the elevated zones (1250-1350 m), with scarce vegetation and predominantly rocky soils; whereas that of Low elevation group was at <1200 m, with denser vegetation and sandy soils. These genetic patterns are likely associated with the species' locomotion type, feeding strategy and building of burrows. Interestingly, we also identified morphological differences, where hind foot size was significantly smaller in individuals from High elevation compared to Low elevation, suggesting the possibility of ecomorphs associated with habitat differences and potential local adaptation processes, which should be explored further. These findings improve our understanding of the genetics and ecology of C. nelsoni and other desert rodents.</p>","PeriodicalId":12991,"journal":{"name":"Heredity","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desert landscape features influencing the microgeographic genetic structure of Nelson's pocket mouse Chaetodipus nelsoni.\",\"authors\":\"Gissella Pineda-Sánchez, Ella Vázquez-Domínguez\",\"doi\":\"10.1038/s41437-024-00732-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Elucidating the factors that drive the genetic patterns of natural populations is key in evolutionary biology, ecology and conservation. Hence, it is crucial to understand the role that environmental features play in species genetic diversity and structure. Landscape genetics measures functional connectivity and evaluates the effects of landscape composition, configuration, and heterogeneity on microevolutionary processes. Deserts constitute one of the world's most widespread biomes and exhibit a striking heterogeneity of microhabitats, yet few landscape genetics studies have been performed with rodents in deserts. We evaluated the relationship between landscape and functional connectivity, at a microgeographic scale, of the Nelson's pocket mouse Chaetodipus nelsoni in the Mapimí Biosphere Reserve (Chihuahuan desert). We used single-nucleotide polymorphisms and characterized the landscape based on on-site environmental data and from Landsat satellite images. We identified two distinct genetic clusters shaped by elevation, vegetation and soil. High elevation group showed higher connectivity in the elevated zones (1250-1350 m), with scarce vegetation and predominantly rocky soils; whereas that of Low elevation group was at <1200 m, with denser vegetation and sandy soils. These genetic patterns are likely associated with the species' locomotion type, feeding strategy and building of burrows. Interestingly, we also identified morphological differences, where hind foot size was significantly smaller in individuals from High elevation compared to Low elevation, suggesting the possibility of ecomorphs associated with habitat differences and potential local adaptation processes, which should be explored further. These findings improve our understanding of the genetics and ecology of C. nelsoni and other desert rodents.</p>\",\"PeriodicalId\":12991,\"journal\":{\"name\":\"Heredity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41437-024-00732-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41437-024-00732-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阐明驱动自然种群遗传模式的因素是进化生物学、生态学和自然保护的关键。因此,了解环境特征在物种遗传多样性和结构中所起的作用至关重要。景观遗传学测量功能连接性,评估景观组成、构造和异质性对微观进化过程的影响。沙漠是世界上分布最广的生物群落之一,其微生境具有显著的异质性,但很少有人对沙漠中的啮齿动物进行景观遗传学研究。我们评估了马皮米生物圈保护区(奇瓦瓦沙漠)纳尔逊袋鼠 Chaetodipus nelsoni 在微地理尺度上的景观与功能连通性之间的关系。我们使用了单核苷酸多态性,并根据现场环境数据和 Landsat 卫星图像确定了地貌特征。我们根据海拔、植被和土壤确定了两个不同的基因群。高海拔组在海拔较高(1250-1350 米)、植被稀少、以岩石土壤为主的区域表现出较高的连通性;而低海拔组在海拔较低(1250-1350 米)、植被稀少、以岩石土壤为主的区域表现出较高的连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Desert landscape features influencing the microgeographic genetic structure of Nelson's pocket mouse Chaetodipus nelsoni.

Elucidating the factors that drive the genetic patterns of natural populations is key in evolutionary biology, ecology and conservation. Hence, it is crucial to understand the role that environmental features play in species genetic diversity and structure. Landscape genetics measures functional connectivity and evaluates the effects of landscape composition, configuration, and heterogeneity on microevolutionary processes. Deserts constitute one of the world's most widespread biomes and exhibit a striking heterogeneity of microhabitats, yet few landscape genetics studies have been performed with rodents in deserts. We evaluated the relationship between landscape and functional connectivity, at a microgeographic scale, of the Nelson's pocket mouse Chaetodipus nelsoni in the Mapimí Biosphere Reserve (Chihuahuan desert). We used single-nucleotide polymorphisms and characterized the landscape based on on-site environmental data and from Landsat satellite images. We identified two distinct genetic clusters shaped by elevation, vegetation and soil. High elevation group showed higher connectivity in the elevated zones (1250-1350 m), with scarce vegetation and predominantly rocky soils; whereas that of Low elevation group was at <1200 m, with denser vegetation and sandy soils. These genetic patterns are likely associated with the species' locomotion type, feeding strategy and building of burrows. Interestingly, we also identified morphological differences, where hind foot size was significantly smaller in individuals from High elevation compared to Low elevation, suggesting the possibility of ecomorphs associated with habitat differences and potential local adaptation processes, which should be explored further. These findings improve our understanding of the genetics and ecology of C. nelsoni and other desert rodents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heredity
Heredity 生物-进化生物学
CiteScore
7.50
自引率
2.60%
发文量
84
审稿时长
4-8 weeks
期刊介绍: Heredity is the official journal of the Genetics Society. It covers a broad range of topics within the field of genetics and therefore papers must address conceptual or applied issues of interest to the journal''s wide readership
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信