{"title":"分析酵母细胞中线粒体相关降解途径(MAD)。","authors":"Pin-Chao Liao, Liza A Pon","doi":"10.1016/bs.mie.2024.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are critical for cellular function in health, disease and aging. Mitochondria-associated degradation (MAD), a pathway for quality control of the organelle, recognizes and ubiquitinates unfolded mitochondrial proteins, removes them from the organelle using a conserved segregase complex, which contains an AAA-ATPase Cdc48 and its cofactors, and degrades them using the ubiquitin-proteasome system (UPS). Here, we describe an approach to (1) study the turnover and ubiquitination of candidate MAD substrates, (2) assay retrotranslocation and export of MAD substrates from the mitochondrial matrix in vitro, and (3) study interactions between MAD substrates and Cdc48 using the budding yeast, Saccharomyces cerevisiae, as a model organism.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":"707 ","pages":"585-610"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the mitochondria-associated degradation pathway (MAD) in yeast cells.\",\"authors\":\"Pin-Chao Liao, Liza A Pon\",\"doi\":\"10.1016/bs.mie.2024.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are critical for cellular function in health, disease and aging. Mitochondria-associated degradation (MAD), a pathway for quality control of the organelle, recognizes and ubiquitinates unfolded mitochondrial proteins, removes them from the organelle using a conserved segregase complex, which contains an AAA-ATPase Cdc48 and its cofactors, and degrades them using the ubiquitin-proteasome system (UPS). Here, we describe an approach to (1) study the turnover and ubiquitination of candidate MAD substrates, (2) assay retrotranslocation and export of MAD substrates from the mitochondrial matrix in vitro, and (3) study interactions between MAD substrates and Cdc48 using the budding yeast, Saccharomyces cerevisiae, as a model organism.</p>\",\"PeriodicalId\":18662,\"journal\":{\"name\":\"Methods in enzymology\",\"volume\":\"707 \",\"pages\":\"585-610\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in enzymology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.mie.2024.09.001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.09.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Analysis of the mitochondria-associated degradation pathway (MAD) in yeast cells.
Mitochondria are critical for cellular function in health, disease and aging. Mitochondria-associated degradation (MAD), a pathway for quality control of the organelle, recognizes and ubiquitinates unfolded mitochondrial proteins, removes them from the organelle using a conserved segregase complex, which contains an AAA-ATPase Cdc48 and its cofactors, and degrades them using the ubiquitin-proteasome system (UPS). Here, we describe an approach to (1) study the turnover and ubiquitination of candidate MAD substrates, (2) assay retrotranslocation and export of MAD substrates from the mitochondrial matrix in vitro, and (3) study interactions between MAD substrates and Cdc48 using the budding yeast, Saccharomyces cerevisiae, as a model organism.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.