Kirsten Wenderholm , Theresa Brunet , Elisabeth Graf , Marie Arens , Eimo Martens , Juliane Winkelmann , Julia Hoefele , Dominik S. Westphal
{"title":"直达心脏的变异--外显子测序中的心脏遗传学二次发现。","authors":"Kirsten Wenderholm , Theresa Brunet , Elisabeth Graf , Marie Arens , Eimo Martens , Juliane Winkelmann , Julia Hoefele , Dominik S. Westphal","doi":"10.1016/j.gene.2024.149063","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Exome sequencing has been established as a fundamental tool in genetic diagnostics. It may also provide information about variants in genes unrelated to the primary purpose, so-called secondary findings. Especially, diagnoses of unnoticed inborn cardiac diseases are of high clinical relevance due to therapeutic options in context of prevention of sudden cardiac death.</div></div><div><h3>Methods</h3><div>Exome data of 9962 individuals was analysed for relevant cardiogenetic findings. Genes were selected according to ACMG recommendations for secondary findings (v.3.1). First, a filter for (likely) pathogenic variants, published in the ClinVar database, was used. Second, exome data was screened for loss of function (LoF) variants in genes in which LoF is a known disease pathomechanism. All variants were evaluated by geneticists regarding their pathogenicity.</div></div><div><h3>Results</h3><div>Pathogenic or likely pathogenic variants were identified in 136 different individuals (136/9962, 1.4%), with the Low-Density Lipoprotein Receptor gene (<em>LDLR</em>, 24/136, 17.6%) and the Titin gene (<em>TTN</em>, 24/136, 17.6%), being the most frequently affected ones. 31.6% (43/136) of the identified variants had been reported beforehand, while 47.1% (64/136) had not been reported. The remaining cases (29/136, 21.3%) were part of research projects with no written reports. In 26.5% (36/136), the finding would have been missed, if only index patients and not their parents had been screened for secondary findings in case of trio ES.</div></div><div><h3>Conclusion</h3><div>As demonstrated in our study, at least one or two out of one hundred people are likely to carry a pathogenic cardiogenetic variant. Counselling geneticist and clinicians need to be aware of these findings in exome and genome sequencing. Informed consent of the patient regarding the report of secondary findings should absolutely be obtained beforehand.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"935 ","pages":"Article 149063"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variants that get straight to your heart – Cardiogenetic secondary findings in exome sequencing\",\"authors\":\"Kirsten Wenderholm , Theresa Brunet , Elisabeth Graf , Marie Arens , Eimo Martens , Juliane Winkelmann , Julia Hoefele , Dominik S. Westphal\",\"doi\":\"10.1016/j.gene.2024.149063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Exome sequencing has been established as a fundamental tool in genetic diagnostics. It may also provide information about variants in genes unrelated to the primary purpose, so-called secondary findings. Especially, diagnoses of unnoticed inborn cardiac diseases are of high clinical relevance due to therapeutic options in context of prevention of sudden cardiac death.</div></div><div><h3>Methods</h3><div>Exome data of 9962 individuals was analysed for relevant cardiogenetic findings. Genes were selected according to ACMG recommendations for secondary findings (v.3.1). First, a filter for (likely) pathogenic variants, published in the ClinVar database, was used. Second, exome data was screened for loss of function (LoF) variants in genes in which LoF is a known disease pathomechanism. All variants were evaluated by geneticists regarding their pathogenicity.</div></div><div><h3>Results</h3><div>Pathogenic or likely pathogenic variants were identified in 136 different individuals (136/9962, 1.4%), with the Low-Density Lipoprotein Receptor gene (<em>LDLR</em>, 24/136, 17.6%) and the Titin gene (<em>TTN</em>, 24/136, 17.6%), being the most frequently affected ones. 31.6% (43/136) of the identified variants had been reported beforehand, while 47.1% (64/136) had not been reported. The remaining cases (29/136, 21.3%) were part of research projects with no written reports. In 26.5% (36/136), the finding would have been missed, if only index patients and not their parents had been screened for secondary findings in case of trio ES.</div></div><div><h3>Conclusion</h3><div>As demonstrated in our study, at least one or two out of one hundred people are likely to carry a pathogenic cardiogenetic variant. Counselling geneticist and clinicians need to be aware of these findings in exome and genome sequencing. Informed consent of the patient regarding the report of secondary findings should absolutely be obtained beforehand.</div></div>\",\"PeriodicalId\":12499,\"journal\":{\"name\":\"Gene\",\"volume\":\"935 \",\"pages\":\"Article 149063\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378111924009442\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111924009442","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Variants that get straight to your heart – Cardiogenetic secondary findings in exome sequencing
Background
Exome sequencing has been established as a fundamental tool in genetic diagnostics. It may also provide information about variants in genes unrelated to the primary purpose, so-called secondary findings. Especially, diagnoses of unnoticed inborn cardiac diseases are of high clinical relevance due to therapeutic options in context of prevention of sudden cardiac death.
Methods
Exome data of 9962 individuals was analysed for relevant cardiogenetic findings. Genes were selected according to ACMG recommendations for secondary findings (v.3.1). First, a filter for (likely) pathogenic variants, published in the ClinVar database, was used. Second, exome data was screened for loss of function (LoF) variants in genes in which LoF is a known disease pathomechanism. All variants were evaluated by geneticists regarding their pathogenicity.
Results
Pathogenic or likely pathogenic variants were identified in 136 different individuals (136/9962, 1.4%), with the Low-Density Lipoprotein Receptor gene (LDLR, 24/136, 17.6%) and the Titin gene (TTN, 24/136, 17.6%), being the most frequently affected ones. 31.6% (43/136) of the identified variants had been reported beforehand, while 47.1% (64/136) had not been reported. The remaining cases (29/136, 21.3%) were part of research projects with no written reports. In 26.5% (36/136), the finding would have been missed, if only index patients and not their parents had been screened for secondary findings in case of trio ES.
Conclusion
As demonstrated in our study, at least one or two out of one hundred people are likely to carry a pathogenic cardiogenetic variant. Counselling geneticist and clinicians need to be aware of these findings in exome and genome sequencing. Informed consent of the patient regarding the report of secondary findings should absolutely be obtained beforehand.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.