SRL-ProtoNet:用于少镜头遥感场景分类的自监督表示学习

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bing Liu, Hongwei Zhao, Jiao Li, Yansheng Gao, Jianrong Zhang
{"title":"SRL-ProtoNet:用于少镜头遥感场景分类的自监督表示学习","authors":"Bing Liu,&nbsp;Hongwei Zhao,&nbsp;Jiao Li,&nbsp;Yansheng Gao,&nbsp;Jianrong Zhang","doi":"10.1049/cvi2.12304","DOIUrl":null,"url":null,"abstract":"<p>Using a deep learning method to classify a large amount of labelled remote sensing scene data produces good performance. However, it is challenging for deep learning based methods to generalise to classification tasks with limited data. Few-shot learning allows neural networks to classify unseen categories when confronted with a handful of labelled data. Currently, episodic tasks based on meta-learning can effectively complete few-shot classification, and training an encoder that can conduct representation learning has become an important component of few-shot learning. An end-to-end few-shot remote sensing scene classification model based on ProtoNet and self-supervised learning is proposed. The authors design the Pre-prototype for a more discrete feature space and better integration with self-supervised learning, and also propose the ProtoMixer for higher quality prototypes with a global receptive field. The authors’ method outperforms the existing state-of-the-art self-supervised based methods on three widely used benchmark datasets: UC-Merced, NWPU-RESISC45, and AID. Compare with previous state-of-the-art performance. For the one-shot setting, this method improves by 1.21%, 2.36%, and 0.84% in AID, UC-Merced, and NWPU-RESISC45, respectively. For the five-shot setting, this method surpasses by 0.85%, 2.79%, and 0.74% in the AID, UC-Merced, and NWPU-RESISC45, respectively.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 7","pages":"1034-1042"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12304","citationCount":"0","resultStr":"{\"title\":\"SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification\",\"authors\":\"Bing Liu,&nbsp;Hongwei Zhao,&nbsp;Jiao Li,&nbsp;Yansheng Gao,&nbsp;Jianrong Zhang\",\"doi\":\"10.1049/cvi2.12304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a deep learning method to classify a large amount of labelled remote sensing scene data produces good performance. However, it is challenging for deep learning based methods to generalise to classification tasks with limited data. Few-shot learning allows neural networks to classify unseen categories when confronted with a handful of labelled data. Currently, episodic tasks based on meta-learning can effectively complete few-shot classification, and training an encoder that can conduct representation learning has become an important component of few-shot learning. An end-to-end few-shot remote sensing scene classification model based on ProtoNet and self-supervised learning is proposed. The authors design the Pre-prototype for a more discrete feature space and better integration with self-supervised learning, and also propose the ProtoMixer for higher quality prototypes with a global receptive field. The authors’ method outperforms the existing state-of-the-art self-supervised based methods on three widely used benchmark datasets: UC-Merced, NWPU-RESISC45, and AID. Compare with previous state-of-the-art performance. For the one-shot setting, this method improves by 1.21%, 2.36%, and 0.84% in AID, UC-Merced, and NWPU-RESISC45, respectively. For the five-shot setting, this method surpasses by 0.85%, 2.79%, and 0.74% in the AID, UC-Merced, and NWPU-RESISC45, respectively.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 7\",\"pages\":\"1034-1042\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12304\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12304\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12304","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

使用深度学习方法对大量已标记的遥感场景数据进行分类,能产生良好的效果。然而,要将基于深度学习的方法推广到数据有限的分类任务中,却是一项挑战。少量学习允许神经网络在面对少量标记数据时对未见类别进行分类。目前,基于元学习(meta-learning)的偶发任务可以有效地完成少点分类,而训练一个可以进行表征学习的编码器已成为少点学习的重要组成部分。本文提出了一种基于 ProtoNet 和自监督学习的端到端少镜头遥感场景分类模型。作者设计了预原型(Pre-prototype),以获得更离散的特征空间,并与自监督学习更好地结合;还提出了原型混合器(ProtoMixer),以获得具有全局感受野的高质量原型。在三个广泛使用的基准数据集上,作者的方法优于现有最先进的基于自我监督的方法:UC-Merced, NWPU-RESISC45 和 AID。与之前最先进方法的性能相比。在单次触发设置中,该方法在 AID、UC-Merced 和 NWPU-RESISC45 中的性能分别提高了 1.21%、2.36% 和 0.84%。在五次搜索设置中,该方法在 AID、UC-Merced 和 NWPU-RESISC45 中分别超越了 0.85%、2.79% 和 0.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification

SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification

Using a deep learning method to classify a large amount of labelled remote sensing scene data produces good performance. However, it is challenging for deep learning based methods to generalise to classification tasks with limited data. Few-shot learning allows neural networks to classify unseen categories when confronted with a handful of labelled data. Currently, episodic tasks based on meta-learning can effectively complete few-shot classification, and training an encoder that can conduct representation learning has become an important component of few-shot learning. An end-to-end few-shot remote sensing scene classification model based on ProtoNet and self-supervised learning is proposed. The authors design the Pre-prototype for a more discrete feature space and better integration with self-supervised learning, and also propose the ProtoMixer for higher quality prototypes with a global receptive field. The authors’ method outperforms the existing state-of-the-art self-supervised based methods on three widely used benchmark datasets: UC-Merced, NWPU-RESISC45, and AID. Compare with previous state-of-the-art performance. For the one-shot setting, this method improves by 1.21%, 2.36%, and 0.84% in AID, UC-Merced, and NWPU-RESISC45, respectively. For the five-shot setting, this method surpasses by 0.85%, 2.79%, and 0.74% in the AID, UC-Merced, and NWPU-RESISC45, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信