Álvaro García-Barragán, Ahmad Sakor, Maria-Esther Vidal, Ernestina Menasalvas, Juan Cristobal Sanchez Gonzalez, Mariano Provencio, Víctor Robles
{"title":"NSSC:用于提高肿瘤临床笔记中命名实体识别和链接准确性的神经符号人工智能系统。","authors":"Álvaro García-Barragán, Ahmad Sakor, Maria-Esther Vidal, Ernestina Menasalvas, Juan Cristobal Sanchez Gonzalez, Mariano Provencio, Víctor Robles","doi":"10.1007/s11517-024-03227-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSSC: a neuro-symbolic AI system for enhancing accuracy of named entity recognition and linking from oncologic clinical notes.\",\"authors\":\"Álvaro García-Barragán, Ahmad Sakor, Maria-Esther Vidal, Ernestina Menasalvas, Juan Cristobal Sanchez Gonzalez, Mariano Provencio, Víctor Robles\",\"doi\":\"10.1007/s11517-024-03227-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03227-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03227-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
NSSC: a neuro-symbolic AI system for enhancing accuracy of named entity recognition and linking from oncologic clinical notes.
Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).