{"title":"优化儿科镇静:评估雷马唑仑和右美托咪定在临床实践中的安全性和有效性。","authors":"Vera Scheckenbach, Frank Fideler","doi":"10.1007/s40272-024-00659-1","DOIUrl":null,"url":null,"abstract":"<p><p>Daily, children undergo countless investigations and interventions, which require sedation and immobilization to ensure safety and accuracy. This remains associated with a persistent risk of sedation-induced life-threatening events as children are particularly vulnerable to adverse medical events and complications. Consequently, there is an urgent need to increase the safety of pediatric sedation and anesthesia. An ideal approach involves the use of drugs with fewer intrinsic side effects. In this context, on the basis of their pharmacokinetic properties, remimazolam (RMZ) and dexmedetomidine (DEX) were evaluated for their suitability as ideal sedatives. RMZ and DEX, both of which are currently available in pediatric medicine, have shown great promise in initial publications. To date, only very limited data concerning RMZ in small children are available. RMZ is a novel, ultrashort-acting benzodiazepine that is metabolized by tissue esterase, largely independent of organ function. It has a context-sensitive half-life of approximately 10 min, with minimal accumulation even with prolonged use. Its effects can be completely reversed with flumazenil. DEX, an isomer of medetomidine, is a potent α2-receptor-agonist with multiple indications in anesthesia and intensive care medicine. It has coanalgesic potential, allows for 'arousal sedations' and has a low profile for cardiorespiratory side effects. DEX is metabolized in the liver and is predominantly excreted renally. Both drugs show potential in the prevention and treatment of delirium, with DEX having additional neuroprotective effects. DEX and RMZ possess several properties of an optimal sedative, including clinically insignificant main metabolites and a broad dosage range, indicating their potential to reduce the incidence of sedation-related life-threatening events in children. However, further clinical research is necessary to better evaluate their potential risks.</p>","PeriodicalId":19955,"journal":{"name":"Pediatric Drugs","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Pediatric Sedation: Evaluating Remimazolam and Dexmedetomidine for Safety and Efficacy in Clinical Practice.\",\"authors\":\"Vera Scheckenbach, Frank Fideler\",\"doi\":\"10.1007/s40272-024-00659-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Daily, children undergo countless investigations and interventions, which require sedation and immobilization to ensure safety and accuracy. This remains associated with a persistent risk of sedation-induced life-threatening events as children are particularly vulnerable to adverse medical events and complications. Consequently, there is an urgent need to increase the safety of pediatric sedation and anesthesia. An ideal approach involves the use of drugs with fewer intrinsic side effects. In this context, on the basis of their pharmacokinetic properties, remimazolam (RMZ) and dexmedetomidine (DEX) were evaluated for their suitability as ideal sedatives. RMZ and DEX, both of which are currently available in pediatric medicine, have shown great promise in initial publications. To date, only very limited data concerning RMZ in small children are available. RMZ is a novel, ultrashort-acting benzodiazepine that is metabolized by tissue esterase, largely independent of organ function. It has a context-sensitive half-life of approximately 10 min, with minimal accumulation even with prolonged use. Its effects can be completely reversed with flumazenil. DEX, an isomer of medetomidine, is a potent α2-receptor-agonist with multiple indications in anesthesia and intensive care medicine. It has coanalgesic potential, allows for 'arousal sedations' and has a low profile for cardiorespiratory side effects. DEX is metabolized in the liver and is predominantly excreted renally. Both drugs show potential in the prevention and treatment of delirium, with DEX having additional neuroprotective effects. DEX and RMZ possess several properties of an optimal sedative, including clinically insignificant main metabolites and a broad dosage range, indicating their potential to reduce the incidence of sedation-related life-threatening events in children. However, further clinical research is necessary to better evaluate their potential risks.</p>\",\"PeriodicalId\":19955,\"journal\":{\"name\":\"Pediatric Drugs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40272-024-00659-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40272-024-00659-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
Optimizing Pediatric Sedation: Evaluating Remimazolam and Dexmedetomidine for Safety and Efficacy in Clinical Practice.
Daily, children undergo countless investigations and interventions, which require sedation and immobilization to ensure safety and accuracy. This remains associated with a persistent risk of sedation-induced life-threatening events as children are particularly vulnerable to adverse medical events and complications. Consequently, there is an urgent need to increase the safety of pediatric sedation and anesthesia. An ideal approach involves the use of drugs with fewer intrinsic side effects. In this context, on the basis of their pharmacokinetic properties, remimazolam (RMZ) and dexmedetomidine (DEX) were evaluated for their suitability as ideal sedatives. RMZ and DEX, both of which are currently available in pediatric medicine, have shown great promise in initial publications. To date, only very limited data concerning RMZ in small children are available. RMZ is a novel, ultrashort-acting benzodiazepine that is metabolized by tissue esterase, largely independent of organ function. It has a context-sensitive half-life of approximately 10 min, with minimal accumulation even with prolonged use. Its effects can be completely reversed with flumazenil. DEX, an isomer of medetomidine, is a potent α2-receptor-agonist with multiple indications in anesthesia and intensive care medicine. It has coanalgesic potential, allows for 'arousal sedations' and has a low profile for cardiorespiratory side effects. DEX is metabolized in the liver and is predominantly excreted renally. Both drugs show potential in the prevention and treatment of delirium, with DEX having additional neuroprotective effects. DEX and RMZ possess several properties of an optimal sedative, including clinically insignificant main metabolites and a broad dosage range, indicating their potential to reduce the incidence of sedation-related life-threatening events in children. However, further clinical research is necessary to better evaluate their potential risks.
期刊介绍:
Pediatric Drugs promotes the optimization and advancement of all aspects of pharmacotherapy for healthcare professionals interested in pediatric drug therapy (including vaccines). The program of review and original research articles provides healthcare decision makers with clinically applicable knowledge on issues relevant to drug therapy in all areas of neonatology and the care of children and adolescents. The Journal includes:
-overviews of contentious or emerging issues.
-comprehensive narrative reviews of topics relating to the effective and safe management of drug therapy through all stages of pediatric development.
-practical reviews covering optimum drug management of specific clinical situations.
-systematic reviews that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement.
-Adis Drug Reviews of the properties and place in therapy of both newer and established drugs in the pediatric population.
-original research articles reporting the results of well-designed studies with a strong link to clinical practice, such as clinical pharmacodynamic and pharmacokinetic studies, clinical trials, meta-analyses, outcomes research, and pharmacoeconomic and pharmacoepidemiological studies.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Pediatric Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.