Jing Wang, Zhengyang An, Zhongsheng Wu, Wei Zhou, Pengyu Sun, Piyu Wu, Song Dang, Rui Xue, Xue Bai, Yongtao Du, Rongmei Chen, Wenxu Wang, Pei Huang, Sin Man Lam, Youwei Ai, Suling Liu, Guanghou Shui, Zhe Zhang, Zheng Liu, Jianyong Huang, Kangmin He
{"title":"病灶粘连对 PI3K-PI(3,4,5)P3-AKT 信号传导的空间组织作用","authors":"Jing Wang, Zhengyang An, Zhongsheng Wu, Wei Zhou, Pengyu Sun, Piyu Wu, Song Dang, Rui Xue, Xue Bai, Yongtao Du, Rongmei Chen, Wenxu Wang, Pei Huang, Sin Man Lam, Youwei Ai, Suling Liu, Guanghou Shui, Zhe Zhang, Zheng Liu, Jianyong Huang, Kangmin He","doi":"10.1016/j.molcel.2024.10.010","DOIUrl":null,"url":null,"abstract":"The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P<sub>3</sub>-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P<sub>3</sub> around FAs. As the effector protein of PI(3,4,5)P<sub>3</sub>, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P<sub>3</sub>-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P<sub>3</sub>-AKT signaling.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"31 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial organization of PI3K-PI(3,4,5)P3-AKT signaling by focal adhesions\",\"authors\":\"Jing Wang, Zhengyang An, Zhongsheng Wu, Wei Zhou, Pengyu Sun, Piyu Wu, Song Dang, Rui Xue, Xue Bai, Yongtao Du, Rongmei Chen, Wenxu Wang, Pei Huang, Sin Man Lam, Youwei Ai, Suling Liu, Guanghou Shui, Zhe Zhang, Zheng Liu, Jianyong Huang, Kangmin He\",\"doi\":\"10.1016/j.molcel.2024.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P<sub>3</sub>-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P<sub>3</sub> around FAs. As the effector protein of PI(3,4,5)P<sub>3</sub>, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P<sub>3</sub>-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P<sub>3</sub>-AKT signaling.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2024.10.010\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2024.10.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Spatial organization of PI3K-PI(3,4,5)P3-AKT signaling by focal adhesions
The class I phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is a key regulator of cell survival, growth, and proliferation and is among the most frequently mutated pathways in cancer. However, where and how PI3K-AKT signaling is spatially activated and organized in mammalian cells remains poorly understood. Here, we identify focal adhesions (FAs) as subcellular signaling hubs organizing the activation of PI3K-PI(3,4,5)P3-AKT signaling in human cancer cells containing p110α mutations under basal conditions. We find that class IA PI3Ks are preferentially recruited to FAs for activation, resulting in localized production of PI(3,4,5)P3 around FAs. As the effector protein of PI(3,4,5)P3, AKT1 molecules are dynamically recruited around FAs for activation. The spatial recruitment/activation of the PI3K-PI(3,4,5)P3-AKT cascade is regulated by activated FA kinase (FAK). Furthermore, combined inhibition of p110α and FAK results in a more potent inhibitory effect on cancer cells. Thus, our results unveil a growth-factor independent, compartmentalized organization mechanism for PI3K-PI(3,4,5)P3-AKT signaling.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.