用于无服务器边缘计算功能卸载的多目标深度强化学习

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li
{"title":"用于无服务器边缘计算功能卸载的多目标深度强化学习","authors":"Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li","doi":"10.1109/TSC.2024.3489443","DOIUrl":null,"url":null,"abstract":"Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"288-301"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Deep Reinforcement Learning for Function Offloading in Serverless Edge Computing\",\"authors\":\"Yaning Yang;Xiao Du;Yutong Ye;Jiepin Ding;Ting Wang;Mingsong Chen;Keqin Li\",\"doi\":\"10.1109/TSC.2024.3489443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.\",\"PeriodicalId\":13255,\"journal\":{\"name\":\"IEEE Transactions on Services Computing\",\"volume\":\"18 1\",\"pages\":\"288-301\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Services Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740030/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740030/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Deep Reinforcement Learning for Function Offloading in Serverless Edge Computing
Function offloading problems play a crucial role in optimizing the performance of applications in serverless edge computing (SEC). Existing research has extensively explored function offloading strategies based on optimizing a single objective. However, a significant challenge arises when users expect to optimize multiple objectives according to the relative importance of these objectives. This challenge becomes particularly pronounced when the relative importance of the objectives dynamically shifts. Consequently, there is an urgent need for research into multi-objective function offloading methods. In this paper, we redefine the SEC function offloading problem as a dynamic multi-objective optimization issue and propose a novel approach based on Multi-objective Reinforcement Learning (MORL) called MOSEC. MOSEC can coordinately optimize three objectives, i.e., application completion time, User Device (UD) energy consumption, and user cost. To reduce the impact of extrapolation errors, MOSEC integrates a Near-on Experience Replay (NER) strategy during the model training. Furthermore, MOSEC adopts our proposed Earliest First (EF) scheme to maintain the policies learned previously, which can efficiently mitigate the catastrophic policy forgetting problem. Extensive experiments conducted on various generated applications demonstrate the superiority of MOSEC over state-of-the-art multi-objective optimization algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信