苔藓状 CoB/CeO2 异质结作为碱性条件下氧进化反应的高效电催化剂

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin and Zhongwei Chen
{"title":"苔藓状 CoB/CeO2 异质结作为碱性条件下氧进化反应的高效电催化剂","authors":"Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin and Zhongwei Chen","doi":"10.1039/D4QI02325K","DOIUrl":null,"url":null,"abstract":"<p >Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO<small><sub>2</sub></small>) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO<small><sub>2</sub></small> exhibits excellent OER catalytic performance in 1 M KOH, requiring only 247 mV at 100 mA cm<small><sup>−2</sup></small>. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO<small><sub>2</sub></small> create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 24","pages":" 8690-8703"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A moss-like CoB/CeO2 heterojunction as an efficient electrocatalyst for the oxygen evolution reaction under alkaline conditions†\",\"authors\":\"Weijie Fang, Chaofan Liu, Jiang Wu, Weikai Fan, Le Chen, Zaiguo Fu, Lin Peng, Ping He, Jia Lin and Zhongwei Chen\",\"doi\":\"10.1039/D4QI02325K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO<small><sub>2</sub></small>) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO<small><sub>2</sub></small> exhibits excellent OER catalytic performance in 1 M KOH, requiring only 247 mV at 100 mA cm<small><sup>−2</sup></small>. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO<small><sub>2</sub></small> create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 24\",\"pages\":\" 8690-8703\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02325k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02325k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

由于活性表面外露和质量/电荷转移得到改善,异质结构作为一种提高氧进化反应(OER)性能的有效策略已被越来越多的人所认可。受天然植物结构的启发,本研究开发了一种独特的苔藓状非晶/晶体(CoB/CeO2)异质结。这种独特的苔藓状形态有利于在催化剂中形成交错的片状结构,为反应中间体和气体释放提供更多的活性位点和开放通道。得益于苔藓状形态带来的亲水性能,CoB/CeO2 在 1M KOH 中表现出卓越的 OER 催化性能,在 100 mA cm-2 的条件下仅需 247 mV。理化表征和机理研究表明,CoB 和 CeO2 之间紧密的纳米级特征创造了丰富的二元界面,优化了电子构型,引起了电子状态的变化,并提供了丰富的缺陷位点,从而增强了电荷转移能力。这项工作为设计高效、耐用的 OER 电催化剂提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A moss-like CoB/CeO2 heterojunction as an efficient electrocatalyst for the oxygen evolution reaction under alkaline conditions†

A moss-like CoB/CeO2 heterojunction as an efficient electrocatalyst for the oxygen evolution reaction under alkaline conditions†

Heterostructure construction has become increasingly recognized as an effective strategy to enhance oxygen evolution reaction (OER) performance due to the exposed active surfaces and improved mass/charge transfer. Inspired by natural plant structures, this study develops a unique moss-like amorphous/crystalline (CoB/CeO2) heterojunction. This distinctive moss-like morphology facilitates the formation of staggered sheet structures in the catalyst, providing more active sites and open channels for reaction intermediates and gas release. Benefiting from the hydrophilic properties offered by the moss-like morphology, CoB/CeO2 exhibits excellent OER catalytic performance in 1 M KOH, requiring only 247 mV at 100 mA cm−2. Physicochemical characterization and mechanistic studies reveal that the close nanoscale features between CoB and CeO2 create abundant binary interfaces, optimize the electronic configuration, induce changes in electronic states, and provide abundant defect sites, thereby enhancing charge transfer capabilities. This work presents a new paradigm for the design of efficient and durable OER electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信