Bhupendra Sharma, Anirudh Agarwal, Deepak Mishra, Soumitra Debnath, Santosh Shah
{"title":"针对 IRS 辅助无线电力传输的最佳电容设计,实现可持续的物联网通信","authors":"Bhupendra Sharma, Anirudh Agarwal, Deepak Mishra, Soumitra Debnath, Santosh Shah","doi":"10.1002/ett.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Intelligent reflecting surface (IRS) is a cutting-edge technique that can significantly improve wireless propagation. It can efficiently utilize wireless power transfer to enable sustainable Internet-of-Things (IoT) transmission by reconfiguring the incident signal from the active transmitter. However, the flexibility of capacitance tuning in the IRS system, which controls underlying reflections, is often overlooked. The effective capacitance design in the IRS system can provide a new degree of freedom in the IoT communication system, which can enable additional performance gain in the received power. To achieve this, a novel IRS circuital optimization model is proposed in this work. It incorporates various electrical parameters of the meta-surface unit cell for improved IoT-enabled communication. The proposed optimization model provides an optimal capacitance as a function of phase shift (PS), which is controlled by IRS, incident frequency, and other IRS electrical parameters. This optimal capacitance is then used to define the received power. The convexity of the optimization problem is proved, and the global optimal capacitance is obtained for received power maximization. Our simulations show that the proposed optimization model outperforms the existing constructive interference-based optimal PS method, for which the capacitance is first calculated. Finally, the analytical results are numerically validated with several optimal design insights.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 11","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Capacitance Design for IRS Aided Wireless Power Transfer for Sustainable IoT Communication\",\"authors\":\"Bhupendra Sharma, Anirudh Agarwal, Deepak Mishra, Soumitra Debnath, Santosh Shah\",\"doi\":\"10.1002/ett.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Intelligent reflecting surface (IRS) is a cutting-edge technique that can significantly improve wireless propagation. It can efficiently utilize wireless power transfer to enable sustainable Internet-of-Things (IoT) transmission by reconfiguring the incident signal from the active transmitter. However, the flexibility of capacitance tuning in the IRS system, which controls underlying reflections, is often overlooked. The effective capacitance design in the IRS system can provide a new degree of freedom in the IoT communication system, which can enable additional performance gain in the received power. To achieve this, a novel IRS circuital optimization model is proposed in this work. It incorporates various electrical parameters of the meta-surface unit cell for improved IoT-enabled communication. The proposed optimization model provides an optimal capacitance as a function of phase shift (PS), which is controlled by IRS, incident frequency, and other IRS electrical parameters. This optimal capacitance is then used to define the received power. The convexity of the optimization problem is proved, and the global optimal capacitance is obtained for received power maximization. Our simulations show that the proposed optimization model outperforms the existing constructive interference-based optimal PS method, for which the capacitance is first calculated. Finally, the analytical results are numerically validated with several optimal design insights.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 11\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Optimal Capacitance Design for IRS Aided Wireless Power Transfer for Sustainable IoT Communication
Intelligent reflecting surface (IRS) is a cutting-edge technique that can significantly improve wireless propagation. It can efficiently utilize wireless power transfer to enable sustainable Internet-of-Things (IoT) transmission by reconfiguring the incident signal from the active transmitter. However, the flexibility of capacitance tuning in the IRS system, which controls underlying reflections, is often overlooked. The effective capacitance design in the IRS system can provide a new degree of freedom in the IoT communication system, which can enable additional performance gain in the received power. To achieve this, a novel IRS circuital optimization model is proposed in this work. It incorporates various electrical parameters of the meta-surface unit cell for improved IoT-enabled communication. The proposed optimization model provides an optimal capacitance as a function of phase shift (PS), which is controlled by IRS, incident frequency, and other IRS electrical parameters. This optimal capacitance is then used to define the received power. The convexity of the optimization problem is proved, and the global optimal capacitance is obtained for received power maximization. Our simulations show that the proposed optimization model outperforms the existing constructive interference-based optimal PS method, for which the capacitance is first calculated. Finally, the analytical results are numerically validated with several optimal design insights.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications