可压缩欧拉方程的熵稳定流入和流出边界条件

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Magnus Svärd
{"title":"可压缩欧拉方程的熵稳定流入和流出边界条件","authors":"Magnus Svärd","doi":"10.1016/j.jcp.2024.113543","DOIUrl":null,"url":null,"abstract":"<div><div>We propose general inflow and outflow boundary conditions for the Euler equations and prove that they are both linearly well-posed and lead to entropy-bounded solutions. Furthermore, we provide numerical boundary fluxes that enforce these boundary conditions and prove entropy stability for (entropy-stable) finite-volume schemes. The method is generalisable to most entropy-stable summation-by-parts schemes. Finally, we demonstrate their performance in various flow regimes using a second-order accurate entropy-stable finite-volume scheme.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113543"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy-stable in- and outflow boundary conditions for the compressible Euler equations\",\"authors\":\"Magnus Svärd\",\"doi\":\"10.1016/j.jcp.2024.113543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose general inflow and outflow boundary conditions for the Euler equations and prove that they are both linearly well-posed and lead to entropy-bounded solutions. Furthermore, we provide numerical boundary fluxes that enforce these boundary conditions and prove entropy stability for (entropy-stable) finite-volume schemes. The method is generalisable to most entropy-stable summation-by-parts schemes. Finally, we demonstrate their performance in various flow regimes using a second-order accurate entropy-stable finite-volume scheme.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113543\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007915\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007915","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了欧拉方程的一般流入和流出边界条件,并证明它们都是线性良好求解,并导致熵边界解。此外,我们还提供了执行这些边界条件的数值边界通量,并证明了(熵稳定)有限体积方案的熵稳定性。该方法可推广到大多数熵稳定的逐部求和方案。最后,我们使用二阶精确熵稳定有限体积方案演示了该方法在各种流动状态下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-stable in- and outflow boundary conditions for the compressible Euler equations
We propose general inflow and outflow boundary conditions for the Euler equations and prove that they are both linearly well-posed and lead to entropy-bounded solutions. Furthermore, we provide numerical boundary fluxes that enforce these boundary conditions and prove entropy stability for (entropy-stable) finite-volume schemes. The method is generalisable to most entropy-stable summation-by-parts schemes. Finally, we demonstrate their performance in various flow regimes using a second-order accurate entropy-stable finite-volume scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信