Henry Hoult , Ben M. Kennedy , Alexander R.L. Nichols , Shane Cronin , Leighton Watson
{"title":"安山质平原火山爆炸活动前的导管铠装,新西兰塔拉纳基蒙加的一个例子","authors":"Henry Hoult , Ben M. Kennedy , Alexander R.L. Nichols , Shane Cronin , Leighton Watson","doi":"10.1016/j.jvolgeores.2024.108214","DOIUrl":null,"url":null,"abstract":"<div><div>The strength and permeability of volcanic conduits can directly influence eruption dynamics via moderating the outgassing of ascending magma and the density of eruption plumes. Lithic clasts in pyroclastic ejecta can be used to understand the dynamic evolution of conduit walls because they are incorporated into the ascending melt-gas-particle mixture during volcanic eruptions. We examine the 1655 CE Burrell eruption of Taranaki Mounga, which transitioned from effusive activity to an explosive sub-Plinian phase and ended in unsteady columns. This episode was followed by a series of effusive eruptions of lower explosivity. Using textural analysis and physical properties, we distinguish five dominant lithic clast types within Burrell deposits that represent different regions of the shallow conduit and vent. Lithic types 1–3 represent juvenile (‘intrusive cognate’) and older (‘intrusive accessory’) conduit-filling plug materials. Lithic type 4 represents juvenile (‘extrusive cognate’) vent-filling lava dome extruded at the eruption onset, while Type 5 lithics (‘extrusive cognate’) represent sintered/compacted cognate material from the shallow vent accumulated during transitions in eruptive style. Crystalline andesite lithics (type 1) show a microlite-dominated groundmass. Hydrothermally altered andesite lithics (type 2) show breakdown of phenocrysts and increased seismic velocity relative to type 1 lithics. Brecciated andesite lithics (type 3) comprise fractured and sintered clasts of crystalline andesite. Glassy andesite lithics (type 4) show sub-rounded vesicles and glass-hosted microlites. Banded vitrophyre lithics (type 5) show bands of varying vesicularity, crystallinity and clast load. Physical property data reveals porosity, fracturing, sintering and alteration extent dictate dynamic changes in conduit permeability and potentially strength. Our results show how, during the explosive phase of the Burrell eruption, the conduit was lined with juvenile and remnant shallow plug material that was variably fractured, sintered and altered before being eroded and ejected. Comparison with previous work on Taranaki and dome-plug material from around the world shows how fracturing and sintering of conduit walls, combined with lining with dense juvenile material, cause overall permeability reduction and strengthening of the conduit. This inhibits outgassing and preserves conduit structure, facilitating the transition to explosive activity and the establishment of a stable eruption column.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108214"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conduit armouring preceding explosive activity at an andesitic stratovolcano, an example from Taranaki Mounga, New Zealand\",\"authors\":\"Henry Hoult , Ben M. Kennedy , Alexander R.L. Nichols , Shane Cronin , Leighton Watson\",\"doi\":\"10.1016/j.jvolgeores.2024.108214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The strength and permeability of volcanic conduits can directly influence eruption dynamics via moderating the outgassing of ascending magma and the density of eruption plumes. Lithic clasts in pyroclastic ejecta can be used to understand the dynamic evolution of conduit walls because they are incorporated into the ascending melt-gas-particle mixture during volcanic eruptions. We examine the 1655 CE Burrell eruption of Taranaki Mounga, which transitioned from effusive activity to an explosive sub-Plinian phase and ended in unsteady columns. This episode was followed by a series of effusive eruptions of lower explosivity. Using textural analysis and physical properties, we distinguish five dominant lithic clast types within Burrell deposits that represent different regions of the shallow conduit and vent. Lithic types 1–3 represent juvenile (‘intrusive cognate’) and older (‘intrusive accessory’) conduit-filling plug materials. Lithic type 4 represents juvenile (‘extrusive cognate’) vent-filling lava dome extruded at the eruption onset, while Type 5 lithics (‘extrusive cognate’) represent sintered/compacted cognate material from the shallow vent accumulated during transitions in eruptive style. Crystalline andesite lithics (type 1) show a microlite-dominated groundmass. Hydrothermally altered andesite lithics (type 2) show breakdown of phenocrysts and increased seismic velocity relative to type 1 lithics. Brecciated andesite lithics (type 3) comprise fractured and sintered clasts of crystalline andesite. Glassy andesite lithics (type 4) show sub-rounded vesicles and glass-hosted microlites. Banded vitrophyre lithics (type 5) show bands of varying vesicularity, crystallinity and clast load. Physical property data reveals porosity, fracturing, sintering and alteration extent dictate dynamic changes in conduit permeability and potentially strength. Our results show how, during the explosive phase of the Burrell eruption, the conduit was lined with juvenile and remnant shallow plug material that was variably fractured, sintered and altered before being eroded and ejected. Comparison with previous work on Taranaki and dome-plug material from around the world shows how fracturing and sintering of conduit walls, combined with lining with dense juvenile material, cause overall permeability reduction and strengthening of the conduit. This inhibits outgassing and preserves conduit structure, facilitating the transition to explosive activity and the establishment of a stable eruption column.</div></div>\",\"PeriodicalId\":54753,\"journal\":{\"name\":\"Journal of Volcanology and Geothermal Research\",\"volume\":\"455 \",\"pages\":\"Article 108214\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Volcanology and Geothermal Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377027324002075\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324002075","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Conduit armouring preceding explosive activity at an andesitic stratovolcano, an example from Taranaki Mounga, New Zealand
The strength and permeability of volcanic conduits can directly influence eruption dynamics via moderating the outgassing of ascending magma and the density of eruption plumes. Lithic clasts in pyroclastic ejecta can be used to understand the dynamic evolution of conduit walls because they are incorporated into the ascending melt-gas-particle mixture during volcanic eruptions. We examine the 1655 CE Burrell eruption of Taranaki Mounga, which transitioned from effusive activity to an explosive sub-Plinian phase and ended in unsteady columns. This episode was followed by a series of effusive eruptions of lower explosivity. Using textural analysis and physical properties, we distinguish five dominant lithic clast types within Burrell deposits that represent different regions of the shallow conduit and vent. Lithic types 1–3 represent juvenile (‘intrusive cognate’) and older (‘intrusive accessory’) conduit-filling plug materials. Lithic type 4 represents juvenile (‘extrusive cognate’) vent-filling lava dome extruded at the eruption onset, while Type 5 lithics (‘extrusive cognate’) represent sintered/compacted cognate material from the shallow vent accumulated during transitions in eruptive style. Crystalline andesite lithics (type 1) show a microlite-dominated groundmass. Hydrothermally altered andesite lithics (type 2) show breakdown of phenocrysts and increased seismic velocity relative to type 1 lithics. Brecciated andesite lithics (type 3) comprise fractured and sintered clasts of crystalline andesite. Glassy andesite lithics (type 4) show sub-rounded vesicles and glass-hosted microlites. Banded vitrophyre lithics (type 5) show bands of varying vesicularity, crystallinity and clast load. Physical property data reveals porosity, fracturing, sintering and alteration extent dictate dynamic changes in conduit permeability and potentially strength. Our results show how, during the explosive phase of the Burrell eruption, the conduit was lined with juvenile and remnant shallow plug material that was variably fractured, sintered and altered before being eroded and ejected. Comparison with previous work on Taranaki and dome-plug material from around the world shows how fracturing and sintering of conduit walls, combined with lining with dense juvenile material, cause overall permeability reduction and strengthening of the conduit. This inhibits outgassing and preserves conduit structure, facilitating the transition to explosive activity and the establishment of a stable eruption column.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.