{"title":"通过自连接实现表征的共形测量刚度","authors":"Dongryul M. Kim, Hee Oh","doi":"10.1016/j.aim.2024.109992","DOIUrl":null,"url":null,"abstract":"<div><div>Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We discuss a rigidity problem for discrete faithful representations <span><math><mi>ρ</mi><mo>:</mo><mi>Γ</mi><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.</div><div>More precisely, for a given representation <em>ρ</em> with a boundary map <em>f</em> defined on the limit set Λ, we ask whether the extendability of <em>ρ</em> to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be detected by the property that <em>f</em> pushes forward some Γ-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>]</mo></math></span> to a <span><math><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>]</mo></math></span>. When Γ is of divergence type in a rank one group or when <em>ρ</em> arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>ρ</mi><mo>)</mo><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> is Zariski dense in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the push-forward measures <span><math><msub><mrow><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mtext>id</mtext><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub></math></span>, which are higher rank <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>-conformal measures, cannot be in the same measure class.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal measure rigidity for representations via self-joinings\",\"authors\":\"Dongryul M. Kim, Hee Oh\",\"doi\":\"10.1016/j.aim.2024.109992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We discuss a rigidity problem for discrete faithful representations <span><math><mi>ρ</mi><mo>:</mo><mi>Γ</mi><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.</div><div>More precisely, for a given representation <em>ρ</em> with a boundary map <em>f</em> defined on the limit set Λ, we ask whether the extendability of <em>ρ</em> to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be detected by the property that <em>f</em> pushes forward some Γ-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>]</mo></math></span> to a <span><math><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>]</mo></math></span>. When Γ is of divergence type in a rank one group or when <em>ρ</em> arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>ρ</mi><mo>)</mo><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> is Zariski dense in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the push-forward measures <span><math><msub><mrow><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mtext>id</mtext><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub></math></span>, which are higher rank <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>-conformal measures, cannot be in the same measure class.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005085\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005085","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Conformal measure rigidity for representations via self-joinings
Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group . We discuss a rigidity problem for discrete faithful representations and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.
More precisely, for a given representation ρ with a boundary map f defined on the limit set Λ, we ask whether the extendability of ρ to can be detected by the property that f pushes forward some Γ-conformal measure class to a -conformal measure class . When Γ is of divergence type in a rank one group or when ρ arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining is Zariski dense in , then the push-forward measures and , which are higher rank -conformal measures, cannot be in the same measure class.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.