通过自连接实现表征的共形测量刚度

IF 1.5 1区 数学 Q1 MATHEMATICS
Dongryul M. Kim, Hee Oh
{"title":"通过自连接实现表征的共形测量刚度","authors":"Dongryul M. Kim,&nbsp;Hee Oh","doi":"10.1016/j.aim.2024.109992","DOIUrl":null,"url":null,"abstract":"<div><div>Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We discuss a rigidity problem for discrete faithful representations <span><math><mi>ρ</mi><mo>:</mo><mi>Γ</mi><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.</div><div>More precisely, for a given representation <em>ρ</em> with a boundary map <em>f</em> defined on the limit set Λ, we ask whether the extendability of <em>ρ</em> to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be detected by the property that <em>f</em> pushes forward some Γ-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>]</mo></math></span> to a <span><math><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>]</mo></math></span>. When Γ is of divergence type in a rank one group or when <em>ρ</em> arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>ρ</mi><mo>)</mo><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> is Zariski dense in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the push-forward measures <span><math><msub><mrow><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mtext>id</mtext><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub></math></span>, which are higher rank <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>-conformal measures, cannot be in the same measure class.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109992"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal measure rigidity for representations via self-joinings\",\"authors\":\"Dongryul M. Kim,&nbsp;Hee Oh\",\"doi\":\"10.1016/j.aim.2024.109992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We discuss a rigidity problem for discrete faithful representations <span><math><mi>ρ</mi><mo>:</mo><mi>Γ</mi><mo>→</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.</div><div>More precisely, for a given representation <em>ρ</em> with a boundary map <em>f</em> defined on the limit set Λ, we ask whether the extendability of <em>ρ</em> to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> can be detected by the property that <em>f</em> pushes forward some Γ-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub><mo>]</mo></math></span> to a <span><math><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>-conformal measure class <span><math><mo>[</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub><mo>]</mo></math></span>. When Γ is of divergence type in a rank one group or when <em>ρ</em> arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>=</mo><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>ρ</mi><mo>)</mo><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> is Zariski dense in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then the push-forward measures <span><math><msub><mrow><mo>(</mo><mtext>id</mtext><mo>×</mo><mi>f</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>Γ</mi></mrow></msub></math></span> and <span><math><msub><mrow><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>×</mo><mtext>id</mtext><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>ν</mi></mrow><mrow><mi>ρ</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></mrow></msub></math></span>, which are higher rank <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub></math></span>-conformal measures, cannot be in the same measure class.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"458 \",\"pages\":\"Article 109992\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824005085\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005085","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设Γ 是连通简单实代数群 G1 的一个扎里斯基密集离散子群。我们讨论了离散忠实表示 ρ:Γ→G2 的刚性问题,以及相关自接群的高阶共形度量所起的惊人作用。我们的方法恢复了沙利文、图基亚和岳的刚性定理,并适用于阿诺索夫表示,包括希钦表示。更确切地说,对于一个给定表示ρ,其边界映射 f 定义在极限集Λ上,我们问ρ到 G1 的可扩展性是否可以通过 f 将某个Γ-共形度量类 [νΓ] 推向ρ(Γ)-共形度量类 [νρ(Γ)]这一性质来检测。当 Γ 在秩为 1 的群中属于发散类型时,或者当 ρ 来自阿诺索夫表示时,我们给出了肯定的答案,证明了如果自连接 Γρ=(id×ρ)(Γ) 在 G1×G2 中是扎里斯基密集的、那么作为高阶Γρ-共形度量的前推度量(id×f)⁎νΓ 和(f-1×id)⁎νρ(Γ)不可能属于同一个度量类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal measure rigidity for representations via self-joinings
Let Γ be a Zariski dense discrete subgroup of a connected simple real algebraic group G1. We discuss a rigidity problem for discrete faithful representations ρ:ΓG2 and a surprising role played by higher rank conformal measures of the associated self-joining group. Our approach recovers rigidity theorems of Sullivan, Tukia and Yue, as well as applies to Anosov representations, including Hitchin representations.
More precisely, for a given representation ρ with a boundary map f defined on the limit set Λ, we ask whether the extendability of ρ to G1 can be detected by the property that f pushes forward some Γ-conformal measure class [νΓ] to a ρ(Γ)-conformal measure class [νρ(Γ)]. When Γ is of divergence type in a rank one group or when ρ arises from an Anosov representation, we give an affirmative answer by showing that if the self-joining Γρ=(id×ρ)(Γ) is Zariski dense in G1×G2, then the push-forward measures (id×f)νΓ and (f1×id)νρ(Γ), which are higher rank Γρ-conformal measures, cannot be in the same measure class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信